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Abstract It is known that the complementarity problems and the variational inequality

problems are reformulated equivalently as a vector equation by using the natural residual or

Fischer-Burmeister function. In this paper, we first propose an inexact sequential injective

algorithm (ISIA) for a vector equation, and show the global convergence under weak univa-

lence assumption. Roughly speaking, the ISIA generates the sequence of inexact solutions

of approximate vector equations, which consist of the injectives converging to the original

vector-valued function. Although the ISIA is simple and conceptual, it can be a prototype

to many other algorithms such as a smoothing Newton algorithm, semismooth Newton

algorithm, etc. Next, we apply the ISIA prototype to the regularized smoothing Newton

algorithm (ReSNA) for mixed second-order cone complementarity problems (MSOCCPs).

Exploiting the ISIA convergence scheme, we prove that the ReSNA is globally convergent

under Cartesian P0 assumption.

1 Introduction

In this paper, we first focus on the following vector equation (VE):

H(z) = 0, (1.1)

where H : D → Rn is continuous over the domain D ⊆ Rn, but need not be differentiable.

Many classes of problems can be cast as VE (1.1). For example, fixed point problem “find z ∈ Rn

such that z = F (z)” reduces to VE (1.1) by letting H(z) := z − F (z). Nonlinear complementarity

problem (NCP) is to find a vector z ∈ Rn such that z ≥ 0, F (z) ≥ 0 and z⊤F (z) = 0, for a given

function F : Rn → Rn. This problem also reduces to VE (1.1) by letting H(z) := min(z, F (z))

or H(z) :=
(√

z2i + Fi(z)2 − zi − Fi(z)
)n
i=1

, where the latter one is well-known Fischer-Burmeister

function. By using Euclidean Jordan algebra [7, 8], second-order cone complementarity problem

(SOCCP) [2, 3, 4, 8, 11, 15, 16] and symmetric cone complementarity problem (SCCP) [1, 5, 14, 19]

can be also reformulated as VE (1.1). Moreover, variational inequality problem (VIP) [6, 10] is also

cast as VE (1.1) by using the Euclidean projection onto the convex set composed in the VIP.

A function H : D ⊆ Rn → Rn is called weakly univalent if it is continuous and there exists a

sequence of continuous injective functions converging to H uniformly on any bounded subset of D.

(The detailed definition is given in Section 2.) Gowda and Sznajder [9] focused on this property and
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analyzed the connectedness of solution set of linear complementarity problems (LCP). Qi and Sun [18]

used this property to discuss the level-boundedness of merit function for complementarity problems.

Hayashi, Yamashita and Fukushima [11] proposed regularized smoothing Newton method with inexact

inner step calculation for solving SOCCP. They also used the weak univalence property to prove the

global convergence.

In this paper, we propose the inexact sequential injective algorithm (ISIA) for solving VE (1.1)

under the assumption that function H is weakly univalent. Moreover, we prove that the ISIA has

global convergence property. In fact, the ISIA is quite conceptual since it does not contain explicit

calculation process. The proof technique is based on the existing analyses on smoothing Newton

methods. However, we can give the following advantages of considering and analyzing the ISIA.

• The ISIA can be a prototype to many other algorithms. (e.g., smoothing (and regularized)

Newton type algorithm for complementarity problems)

• The global convergence of any algorithms can be discussed comprehensively if they meet the

ISIA prototype.

In other words, the ISIA reveals the essence of global convergence more clearly than the existing

smoothing Newton algorithms.

In the latter part of the paper, we focus on the regularized smoothing Newton algorithm (ReSNA)

for mixed SOCCPs and apply the ISIA prototype to show the global convergence. Here, the word

“mixed” implies that not only the SOC complementarity but also the equality conditions are contained.

Although the ReSNA is proposed in [11] originally, the authors considered “non-mixed” SOCCP only,

and proved the convergence under “monotonicity” assumption. On the other hand, we handle the

“mixed” SOCCP and show the convergence under the Cartesian P0 assumption, which is strictly

weaker than the monotonicity. It is known that the KKT conditions of a general SOCP and some

kinds of robust Nash equilibrium problems [12, 17] are reformulated as mixed SOCCPs. Therefore,

from the viewpoint of applications, it is more convenient to deal with the mixed SOCCP rather than

the non-mixed SOCCP only.

Throughout the paper, we use the following notations. Rn
+ denotes the n-dimensional nonnegative

orthant. H−1(v) denotes the inverse set-valued mapping of H, i.e., {z |H(z) = v}. Thus H−1(0)

denotes the solution set of VE (1.1).

2 Inexact sequential injective algorithm for weakly univalent equa-

tion

In this section, we propose the inexact sequential injective algorithm for solving VE (1.1). For the

sake of simplicity, we assume D = Rn hereafter. In case of D ⊊ Rn, the subsequent discussions can be

extended in a direct manner. Now, we first introduce the weak univalence property for vector-valued

function.

Definition 2.1 (weak univalence) Function H : Rn → Rn is said to be weakly univalent if it is

continuous and there exists a sequence of continuous and injective functions {H̃k} converging to H

uniformly∗1 over any bounded subset of Rn.

∗1We say that the sequence of functions {H̃k} converges toH uniformly over the bounded set Ω, if sup{∥H̃k(w)−H(w)∥ :

w ∈ Ω} converges to 0 as k → ∞.
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We can easily see that any weakly univalent function is continuous. Moreover, any P0 function or

monotone function is known to be weakly univalent. For VE (1.1), we assume the followings.

Assumption A H : Rn → Rn in VE (1.1) satisfies the following conditions:

(i) H is weakly univalent;

(ii) The solution set H−1(0) is nonempty and bounded.

We note that this assumption depends only on the problem itself, and does not depend on the applied

algorithm or generated sequence. Needless to say, assumption (ii) is satisfied when VE (1.1) has a

unique solution.

Now, we provide the inexact sequential injective algorithm.

Algorithm 1 (Inexact sequential injective algorithm: ISIA)

Step 0 Choose the function and scalar sequences {H̃k} and {βk} such that

(i) βk ≥ 0 for all k, and limk→∞ βk = 0;

(ii) For each k, H̃k : Rn → Rn is continuous and injective, and {H̃k} con-

verges to H uniformly over any bounded set.

Choose w0 and set k := 0.

Step 1 If ∥H(wk)∥ = 0, then terminate and output wk as a solution. Otherwise, go to

Step 2.

Step 2 Find a vector wk+1 ∈ Rn such that

∥H̃k(w
k+1)∥ ≤ βk. (2.1)

Step 3 Set k := k + 1. Go back to Step 1.

In Step 0, the sequence {βk} or {H̃k} need not be determined explicitly beforehand. It is sufficient

if {βk} and {H̃k} satisfy conditions (i) and (ii) eventually through the iterations. To obtain wk+1 in

Step 2, we may use any suitable unconstrained minimization technique or Newton type approach. In

order for the ISIA to be well-defined, there must exist wk+1 satisfying (2.1).

Assumption B For the functions {H̃k} and parameters {βk} used in Algorithm 1, {w | ∥H̃k(w)∥ ≤
βk} is nonempty for all k.

Notice that Assumption B holds when H̃−1
k (0) ̸= ∅ or H̃k is a one-to-one mapping. Moreover, due to

Assumption A(ii), Assumption B must hold for all k sufficiently large.

Now, we are to show the global convergence of the algorithm. To this end, we introduce the

following lemma, which indicates a property that the weakly univalent functions possess.

Lemma 2.1 [6, Cor. 3.6.5] Let H : Rn → Rn be a weakly univalent function such that the inverse

image H−1(0) is nonempty and compact. Then, for any ε > 0, there exists a δ = δ(ε) > 0 such that

the following statement∗2 holds :

∗2Here, cl (·) and B(0, ε) denote the closure and the open ball with radius ε > 0, i.e., B(0, ε) := {w ∈ Rn | ∥w∥ < ε},
respectively.
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If a function G : Rn → Rn is weakly univalent and

sup
{
∥G(w)−H(w)∥ : w ∈ cl(H−1(0) +B(0, ε))

}
≤ δ,

then G−1(0) is connected and ∅ ̸= G−1(0) ⊆ H−1(0) +B(0, ε).

By using this lemma, we establish the global convergence of the ISIA.

Theorem 2.1 Suppose that Assumptions A and B holds. Let {wk} be the sequence generated by

Algorithm 1. Then, {wk} is bounded, and any accumulation point solves VE (1.1).

proof. We first show the boundedness of {wk}. Let ε > 0 be fixed arbitrarily. Then we have

a positive number δ = δ(ε) > 0 satisfying Lemma 2.1. Moreover, by Assumption A(ii), Ωε :=

H−1(0)+B(0, ε) is nonempty and bounded. Now, define G̃k : Rn → Rn by G̃k(w) := H̃k(w)−H̃k(w
k+1)

for each k. Then G̃k is weakly univalent since it is continuous and injective. Moreover, there exists a

k such that the following formulas hold for any k ≥ k and w ∈ cl Ωε:

∥G̃k(w)−H(w)∥ = ∥H̃k(w)− H̃k(w
k+1)−H(w)∥

≤ ∥H̃k(w)−H(w)∥+ ∥H̃k(w
k+1)∥

≤ sup
{
∥H̃k(w

′)−H(w′)∥ : w′ ∈ cl Ωε

}
+ βk

≤ δ,

where the first inequality is due to the triangular inequality, the second inequality holds from w ∈ cl Ωε

and (2.1), and the last inequality follows since βk converges to 0 and {H̃k} converges to H uniformly

over the compact set cl Ωε. Thus, by Lemma 2.1 with G := G̃k, we have

∅ ̸= G̃−1
k (0) ⊆ Ωε

for all k ≥ k. Since wk+1 ∈ G̃−1
k (0) and Ωε is bounded, we have the boundedness of {wk}.

Next we show the latter part. Since {wk} is bounded, there exists a bounded set W satisfying

{wk} ⊆ W . By the triangular inequality and Step 2 of Algorithm 1, we have

∥H(wk+1)∥ ≤ ∥H̃k(w
k+1)−H(wk+1)∥+ ∥H̃k(w

k+1)∥

≤ sup
{
∥H̃k(w

′)−H(w′)∥ : w′ ∈ W
}
+ βk.

Thus we have ∥H(wk+1)∥ → 0. Since H is continuous, arbitrary accumulation point w∗ of {wk}
satisfies H(w∗) = 0.

We readily have the following corollary, which can be applied to the smoothing Newton type algorithms

more directly.

Corollary 2.1 Let H̃ν : Rn → Rn be a function with a vector parameter ν ∈ Rℓ
+ such that

(i) for any fixed ν > 0, H̃ν is continuously differentiable over Rn,

(ii) ∇H̃ν(w) is nonsingular for any ν > 0 and w ∈ Rn,

(iii) H̃ν converges to H uniformly over an arbitrary bounded set Ω ⊂ Rn as ν ↘ 0.
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Let {νk} ⊆ Rℓ
+ be an arbitrary sequence such that νk > 0 for any k, and νk ↘ 0 as k → ∞. Let {wk}

the sequence generated by Algorithm 1 with H̃k := Hνk . Suppose that Assumptions A and B hold.

Then, {wk} is bounded, and any accumulation point solves VE (1.1).

proof. By (i) and (ii), the function Hνk is continuous and injective for each k. Thus, by (iii) and

Theorem 2.1, we have the corollary.

3 Regularized smoothing Newton algorithm for mixed second-order

cone complementarity problem

In the previous section, we have studied the global convergence of ISIA. Our next step is to apply the

ISIA prototype to the ReSNA for mixed second-order cone complementarity problems (MSOCCPs).

In this section, we first review the background of MSOCCP briefly, and then extend the ReSNA for

non-mixed SOCCP to MSOCCP in a straightforward manner. The actual convergence analysis will

be provided in the next section.

3.1 Mixed second-order cone complementarity problem

The MSOCCP is formulated as follows:

Find (x, y, p) ∈ Rn × Rn × Rℓ

(MSOCCP) such that x ∈ K, y ∈ K, x⊤y = 0, (3.1)

y = F1(x, p), F2(x, p) = 0,

where F1 : Rn × Rℓ → Rn and F2 : Rn × Rℓ → Rℓ are given continuously differentiable functions, and

K is a Cartesian product of several second-order cones (SOCs), i.e.,

K := Kn1 ×Kn2 × · · · × Knm (3.2)

with n1 + n2 + · · ·+ nm = n and

Kni :=


{
z ∈ R

∣∣ z ≥ 0
}

(ni = 1){
z ∈ Rni

∣∣∣ z1 ≥√z22 + · · ·+ z2ni

}
(ni ≥ 2).

The MSOCCP involves many kinds of optimization/equilibrium problems as special cases. When

n1 = n2 = · · · = nm (i.e., K = K1 × K1 × · · · × K1 = Rn
+), MSOCCP (3.1) reduces to nonlinear

complementarity problem (NCP) or mixed complementarity problem (MCP). On the other hand, for

the nonlinear second-order cone programming problem (NSOCP)

Minimize θ(z)

subject to G(z) ∈ K, H(z) = 0 (3.3)

with θ : Rℓ1 → R, G : Rℓ1 → Rn and H : Rℓ1 → Rℓ2 , the KKT conditions are given as

Find (x, y, z, w) ∈ Rn × Rn × Rℓ1 × Rℓ2

such that x ∈ K, y ∈ K, x⊤y = 0,

y = G(z), H(z) = 0,

∇θ(z)−∇G(z)x−∇H(z)w = 0,
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which is certainly of the form MSOCCP (3.1). Also there are some examples that cannot be written as

MCP or NSOCP but as MSOCCP. Consider the non-cooperative game in which each player chooses

his/her strategy by solving SOCP. Then the KKT conditions of each player’s SOCP can be written

as an MSOCCP, and all players’ MSOCCPs are combined to one “big” MSOCCP. Such a formulation

can be found in the robust Nash equilibrium problems [12, 17] and the robust Wardrop equilibrium

problems [13].

For solving MSOCCP (3.1), we extend the regularized smoothing Newton algorithm (ReSNA)

proposed by Hayashi, Yamashita and Fukushima [11]. Although the manner of extension is quite

analogous, our study is different in the following two points:

(a) We focus on the mixed SOCCP;

(b) We analyze the convergence property under Cartesian P0 assumption.

In terms of (a), Hayashi et al. [11] only focused on the non-mixed SOCCP:

Find (x, y) ∈ Rn × Rn

such that x ∈ K, y ∈ K, x⊤y = 0, y = F1(x), (3.4)

which is a special case of MSOCCP (3.1) with ℓ = 0. It is true that SOCP (3.3) can be cast as a

non-mixed SOCCP (3.4) if some auxiliary variables are incorporated.3 However, such a formulation

is not always appropriate, since it increases the dimension of decision variables and may lose some

favorable properties that the functions G and H in (3.3) possess. In terms of (b), the authors of [11]

showed the convergence property under the monotonicity assumption. However, as mentioned later,

the Cartesian P0 property is strictly weaker than the monotonicity.

3.2 Regularized smoothing Newton method

Next, we construct the ReSNA for MSOCCP (3.1). Since the essential scheme is the same as [11], we

will often omit the details.

Let x and y be partitioned according to the Cartesian structure of K = Kn1 × · · · × Knm , i.e.,

x = (x1, . . . , xm) ∈ Rn1 × · · · × Rnm ,

y = (y1, . . . , ym) ∈ Rn1 × · · · × Rnm .
(3.5)

Define function ΦNR : Rn × Rn → Rn, called a natural residual [8, 11], by

ΦNR(x, y) :=

 φNR(x
1, y1)
...

φNR(x
m, ym)

 ,

φNR(x
i, yi) := xi − PKni (xi − yi),

where PKni (xi − yi) denotes the Euclidean projection of xi − yi onto Kni . Note that, when ni = 1, we

have φNR(x
i, yi) = min(xi, yi) since K1 = R+ yields xi−PK1 (xi−yi) = xi−max(0, xi−yi) = min(xi, yi).

It is known that the natural residual ΦNR satisfies

ΦNR(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, x⊤y = 0.

3Let z′ and z′′ be auxiliary variables satisfying z′ ≥ 0, z′′ ≥ 0 and z = z′−z′′. Then, SOCP (3.3) can be reformulated

as another SOCP with decision variables (z′, z′′) ∈ R2ℓ1
+ and certain SOC constraints. The KKT conditions of such an

SOCP can be expressed as a non-mixed SOCCP.
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Therefore, letting HNR : Rn × Rn × Rℓ → R2n+ℓ be

HNR(x, y, p) :=

 ΦNR(x, y)

F1(x, p)− y

F2(x, p)

 , (3.6)

we can reformulate MSOCCP (3.1) as the following VE equivalently:

HNR(x, y, p) = 0. (3.7)

Since MSOCCP (3.1) is equivalent to (3.7), we have only to solve (3.7) instead of MSOCCP (3.1).

However, function ΦNR is nondifferentiable, and hence the Newton based approach cannot be applied

in a direct manner. Moreover, even if function ΦNR is smoothened, its Jacobian matrix may become

singular. To overcome those difficulties, we introduce the smoothing method and the regularization

method.

Smoothing method

A function Φµ parameterized by µ ≥ 0 is called a smoothing function of ΦNR if it satisfies the following

conditions:

• For any fixed µ > 0, Φµ is continuously differentiable over (x, y) ∈ Rn × Rn;

• limµ↘0Φµ(x, y) = ΦNR(x, y) for any fixed (x, y) ∈ Rn × Rn.

In the smoothing method, we handle Φµ instead of ΦNR with letting µ ↘ 0.

In [11], the smoothing function Φµ is composed as follows. Consider a continuously differentiable

convex function ĝ : ℜ → ℜ satisfying

lim
α→−∞

ĝ(α) = 0, lim
α→∞

(ĝ(α)− α) = 0, 0 < ĝ′(α) < 1. (3.8)

For example, ĝ1(α) = (
√
α2 + 4 + α)/2 and ĝ2(α) = ln(eα + 1) satisfy (3.8). Then, we can easily see

that limµ↘0 µĝ(α/µ) = max{0, α} for any α ∈ R. By using this fact, Φµ is defined by

Φµ(x, y) :=

 φµ(x
1, y1)
...

φµ(x
m, ym)


with

φµ(x
i, yi) := xi − Pµ(x

i − yi),

Pµ(z) :=

{
µĝ(λ1/µ)u

{1} + µĝ(λ2/µ)u
{2} (dim(z) ≥ 2)

µĝ(z/µ) (dim(z) = 1).
(3.9)

Here, λi and u{i} (i = 1, 2) denote the spectral values and vectors of z, respectively. Those definitions

are according to the Euclidean Jordan algebra, and its details are found in [7, 8, 11].
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Regularization method

Let the functions F1,ε : Rn × Rl → Rn and F2,ε : Rn × Rl → Rl be defined by

F1,ε(x, p) := F1(x, p) + εx,

F2,ε(x, p) := F2(x, p) + εp,

respectively, with a positive parameter ε. In general, functions F1,ε and F2,ε have better properties

than F1 and F2 from the viewpoint of global convergence. For example, if F =
(
F1

F2

)
is a P0 function,

then
(F1,ε

F2,ε

)
is a uniformly P function for any ε > 0.

Embedding the smoothing and regularization parameters, we define a function Hµ,ε : Rn × Rn ×
Rl → R2n+ℓ by

Hµ,ε(x, y, p) :=

 Φµ(x, y)

F1,ε(x, p)− y

F2,ε(x, p)

 . (3.10)

Then, we solve the inequality ∥Hµ,ε(x, y, p)∥ ≤ β by Newton’s method with letting (µ, ε, β) ↘ (0, 0, 0).

This is the main idea of ReSNA.

Before providing the main algorithm, we give some functions and its related proposition that will

be used in the algorithm. Since the functions are important only for the local quadratic convergence,4

we omit the detailed explanations here.

Definition 3.2 [11]

(a) λ̃ : Rn → [0,+∞) is a function defined by

λ̃(z) :=

{
min

i∈I(z)
|λi(z)| (I(z) ̸= ∅)

0 (I(z) = ∅) ,
(3.11)

where λi(z) (i = 1, 2) are the spectral values of z, and I(z) ⊆ {1, 2} is the index set defined by

I(z) := {i |λi(z) ̸= 0}.

(b) Choose any function ĝ satisfying (3.8). Then, µ : Rn × Rn → [0,+∞] is an arbitrary function

such that ∣∣∣ĝ′(α/µ)− lim
µ↘0

ĝ′(α/µ)
∣∣∣ < δ ∀µ ∈

(
0, µ(α, δ)

)
, (3.12)

for any fixed α ∈ R and δ > 0.

Proposition 3.1 [11, Prop. 4.12] Let ĝ be defined by ĝ(α) = (
√
α2 + 4 + α)/2, which satisfies (3.8).

Let µ : Rn × Rn → [0,+∞] be defined by

µ(α, δ) :=


+∞ (δ ≥ 1/2 or α = 0)

1

2
|α|

√
δ (δ < 1/2 and α ̸= 0) .

Then, µ satisfies the condition (3.12).

4In [11], the authors showed not only the global convergence but also the local quadratic convergence. However, we

do not discuss the latter property since the ISIA prototype cannot affect the quadratic convergence structurally.
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Now, we are in the position to provide the detailed steps of ReSNA. In what follows, we use the

following notations for convenience:

w :=

x

y

p

 , w(k) :=

x(k)

y(k)

p(k)

 .

Algorithm 2 (Regularized smoothing Newton algorithm: ReSNA)

Step 0 Choose the parameters η, ρ ∈ (0, 1), η ∈ (0, η], σ ∈ (0, 1/2), κ > 0 and κ̂ > 0.

Choose the initial values w(0) ∈ R2n+ℓ and β0 ∈ (0,∞). Let µ0 := ∥HNR(w
(0))∥ and

ε0 := ∥HNR(w
(0))∥. Set k := 0.

Step 1 Terminate if ∥HNR(w
(k))∥ = 0.

Step 2

Step 2.0 Set v(0) := w(k) ∈ R2n+ℓ and j := 0.

Step 2.1 Find a vector d̂(j) ∈ R2n+ℓ such that

Hµk,εk(v
(j)) +∇Hµk,εk(v

(j))⊤d̂(j) = 0.

Step 2.2 If ∥Hµk,εk(v
(j) + d̂(j))∥ ≤ βk, then let w(k+1) := v(j) + d̂(j) and go to Step

3. Otherwise, go to Step 2.3.

Step 2.3 Find the smallest nonnegative integer m such that

∥Hµk,εk(v
(j) + ρmd̂(j))∥2 ≤ (1− 2σρm)∥Hµk,εk(v

(j))∥2.

Let mj := m, τj := ρmj and v(j+1) := v(j) + τj d̂
(j).

Step 2.4 If

∥Hµk,εk(v
(j+1))∥ ≤ βk, (3.13)

then let w(k+1) := v(j+1) and go to Step 3. Otherwise, set j := j + 1 and go back

to Step 2.1.

Step 3 Update the parameters as follows :

µk+1 := min
{
κ∥HNR(w

(k+1))∥2, µ0η
k+1, µ

(
λ̃(x(k+1) − y(k+1)), κ̂∥HNR(w

(k+1))∥
)}

,

εk+1 := min
{
κ∥HNR(w

(k+1))∥2, ε0ηk+1
}
,

βk+1 := β0η
k+1.

Set k := k + 1. Go back to Step 1.

Steps 2.0 – 2.4 are to find a point w(k+1) such that ∥Hµk,εk(w
(k+1))∥ ≤ βk. We note that Algorithm 2 is

well-defined in the sense that Steps 2.0 – 2.4 find v(j+1) satisfying (3.13) in a finite number of iterations

for each k. (It can be proved easily as in [11].) In Step 3, λ̃ and µ are defined as (3.11) and (3.12),

respectively. This step specifies the updating rule of the parameters, where {βk}, {µk} and {εk}
converge to 0 since 0 < η ≤ η < 1.
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4 Convergence analyses under Cartesian P0 property

In the previous section, we have provided the detailed steps of ReSNA for MSOCCP (3.1). In the

algorithm, the MSOCCP is reformulated as VE (3.7) equivalently. Moreover, to solve it, the ReSNA

generates the sequence {w(k)} such that (i) ∥Hµk,εk(w
(k+1))∥ ≤ βk for each k, (ii) {βk} converges to

0, and (iii) {Hµk,εk} converges to HNR uniformly. Thus, if HNR is weakly univalent, then we can apply

the ISIA prototype directly to prove the global convergence.

In this section, we first introduce the Cartesian P0 property to a certain function in MSOCCP (3.1).

Then, we prove thatHµ,ε is injective for any µ > 0 and ε > 0, and consequently, Algorithm 2 is globally

convergent.

4.1 Cartesian P0 property

Let

σ := (ν1, ν2, . . . , νr)
⊤ ∈ Zr (4.1)

be an integer vector such that νi ≥ 1 for i = 1, 2, . . . , r and ν =
∑r

i=1 νi. Then, we first decompose

the vector z ∈ Rν , matrix M ∈ Rν×ν and function F : Rν → Rν according to the components of σ as

follows:

z =


z1

z2

...

zr

 , M =


M11 M12 · · · M1r

M21 M22 · · · M2r
...

...
. . .

...

Mr1 Mr2 · · · Mrr

 , F (z) =


F 1(z)

F 2(z)
...

F r(z)

 ,

where zi ∈ Rνi , Mij ∈ Rνi×νj and F i : Rν → Rνi . Then, we can define the Cartesian P0 property.

Definition 4.3 Let σ ∈ Zr be an integer vector given as (4.1). Then, we say that

(i) the matrix M ∈ Rν×ν satisfies the σ-Cartesian P0 property if, for any z ∈ Rν \ {0}, there exists

i = i(z) ∈ {1, 2, . . . , r} such that

(zi)⊤(Mz)i ≥ 0 and zi ̸= 0;

(ii) the function F : Rν → Rν satisfies the σ-Cartesian P0 property if, for any (x, y) ∈ Rν×Rν , there

exists i = i(x, y) ∈ {1, 2, . . . , r} such that

(xi − yi)⊤(F i(x)− F i(y)) ≥ 0 and xi ̸= yi.

Remark If σ = (1, 1, . . . , 1)⊤ ∈ Rν and r = ν, then the σ-Cartesian P0 property coincides with the

normal P0 property. On the other hand, if σ = ν ∈ R and r = 1, then the σ-Cartesian P0 properties of

(i) and (ii) are equivalent to the positive semidefiniteness and the monotonicity, respectively. Cartesian

P property and uniform Cartesian P property can be defined in a similar way to the case of normal

P property and uniform P property.

It is known that, if M is a P0 matrix, then M +D is nonsingular for any positive definite diagonal

matrix D. The following theorem is a natural extension of this property and provides the necessary

condition for a given matrix to have the Cartesian P0 property.
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Theorem 4.2 Let σ be given by (4.1), and M ∈ Rν×ν be an arbitrary σ-Cartesian P0 matrix. Then,

M + D is nonsingular for any positive definite block diagonal matrix D = diag{Dii}ri=1 with Dii ∈
Rνi×νi ≻ 0.

proof. Let z be a vector such that (M +D)z = 0. Assume for contradiction that z ̸= 0. Then, due

to the σ-Cartesian P0 property, there exists an i such that zi ̸= 0 and (zi)⊤(Mz)i ≥ 0. Thus we have

0 = (zi)⊤
(
(M +D)z

)i
= (zi)⊤(Mz)i + (zi)⊤Diiz

i ≥ (zi)⊤Diiz
i,

where the first equality is due to (M +D)z = 0. However, this contradicts the positive definiteness of

Dii and zi ̸= 0. Thus M +D is nonsingular.

4.2 Global convergence analysis

We first analyze the nonsingularity of the Jacobian matrix of Hµ,ε(x, y, p) defined by (3.10). Let

µ > 0 and ε ≥ 0 be given arbitrarily. Then, by the definition of Hµ,ε, Φµ, ĝ, etc., the Jacobian

∇Hµ,ε(x, y, p) ∈ R(2n+ℓ)×(2n+ℓ) can be calculated as

∇Hµ,ε(x, y, p) =

 I −Dµ(x, y) ∇xF1(x, p) + εI ∇xF2(x, p)

Dµ(x, y) −I 0

0 ∇pF1(x, p) ∇pF2(x, p) + εI

 , (4.2)

where

Dµ(x, y) := diag
{
∇Pµ(x

i − yi)
}m
i=1

. (4.3)

In (4.3), Pµ is defined by (3.9), and diag
{
∇Pµ(x

i − yi)
}m
i=1

denotes the block diagonal matrix with

entries ∇Pµ(x
i − yi) ∈ Rni×ni (i = 1, . . . ,m). The explicit expression of ∇Pµ(·) is given in [11]. For

this Jacobian function, we have the following property.

Proposition 4.2 [8] Let Pµ : Rni → Rni be defined by (3.9). Then we have

0 ≺ ∇Pµ(z) ≺ I (4.4)

for any z ∈ Rni, where A ≺ B means the positive definiteness of B −A.

Notice that, if ni = 1, then (4.4) means that 0 < P ′
µ(z) < 1.

By using this fact, we can prove the nonsingularity of ∇Hµ,ε under Cartesian P0 assumption. Set

σ ∈ Zm+ℓ as

σ := (n1, n2, . . . , nm, 1, . . . , 1)⊤ ∈ Zm+ℓ, (4.5)

where the first m components n1, n2, . . . , nm corresponds to the dimensions of SOCs K, and the last

ℓ components 1, . . . , 1 corresponds to the ℓ-dimensional vector equality F2(x, p) = 0. Moreover, let

F : Rn+ℓ → Rn+ℓ be defined by

F (x, p) :=

(
F1(x, p)

F2(x, p)

)
. (4.6)

Then, we have the following theorem.
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Theorem 4.3 Let σ ∈ Zm+ℓ and F : Rn+ℓ → Rn+ℓ be given by (4.5) and (4.6), respectively. Suppose

that F is a σ-Cartesian P0 function. Then, (a) the matrix ∇Hµ,ε(x, y, p) given by (4.2) is nonsingular

for any µ > 0, ε > 0 and (x, y, p) ∈ Rn × Rn × Rℓ, and hence, (b) the function HNR defined by (3.6)

is weakly univalent.

proof. Let ξ := (ξx, ξy, ξp) ∈ Rn × Rn × Rℓ be a vector satisfying ∇Hµ,ε(x, y, p)ξ = 0. Denote

Dµ = Dµ(x, y), F1 = F1(x, y, p) and F2 = F2(x, y, p) for simplicity. Then, by (4.2), we have

(I −Dµ)ξx + (∇xF1 + εI)ξy +∇xF2ξp = 0, (4.7)

Dµξx − ξy = 0, (4.8)

∇pF1ξy + (∇pF2 + εI)ξp = 0. (4.9)

By (4.8) together with (4.3) and (4.4), we have ξx = D−1
µ ξy. Substituting this into (4.7) and (4.9), we

have (D−1
µ − I +∇xF1 + εI)ξy +∇xF2ξp = 0 and ∇pF1ξy + (∇pF2 + εI)ξp = 0, that is,

0 =

([
∇xF1 ∇xF2

∇pF1 ∇pF2

]
+

[
D−1

µ − I + εI 0

0 εI

])[
ξy
ξp

]
=

(
∇F +

[
diag

{
∇Pµ(x

i − yi)−1 − I
}m

i=1
+ εI 0

0 εI

])[
ξy
ξp

]
. (4.10)

Notice that ∇Pµ(x
i − yi)−1 − I ≻ 0 since 0 ≺ ∇Pµ(x

i − yi) ≺ I. Moreover, ∇F (x, p) is a σ-Cartesian

P0 matrix since F is a σ-Cartesian P0 function. Hence, by Theorem 4.2, the matrix

∇F +

[
diag

{
∇Pµ(x

i − yi)−1 − I
}m

i=1
+ εI 0

0 εI

]

is nonsingular. This together with (4.10) yields ξy = 0, ξp = 0 and ξx = D−1
µ ξy = 0. Hence

∇Hµ,ε(x, y, p) is nonsingular.

Finally, we show the global convergence of Algorithm 2.

Theorem 4.4 Let σ ∈ Zm+ℓ and F : Rn+ℓ → Rn+ℓ be given by (4.5) and (4.6), respectively. Suppose

that (i) the solution set of MSOCCP (3.1) is nonempty and bounded, and (ii) F is a σ-Cartesian P0

function. Then, the sequence {wk} generated by Algorithm 2 is bounded, and any accumulation point

solves MSOCCP (3.1).

proof. By the definition (3.10) of Hµ,ε and Theorem 4.3, we can easily see that the assumptions

(i)–(iii) of Corollary 2.1 holds. Moreover, by the same argument in [11], we have v(j+1) satisfying

(3.13) with a finite j, i.e., Assumption B holds. Hence, by Corollary 2.1, we obtain the result.

5 Concluding remarks

In this paper, we have mainly dealt with two topics. The first one is the ISIA for solving weakly

univalent VEs. We proved that, under the boundedness of the solution set, the sequence generated

by the ISIA is bounded and any accumulation point solves the VE. The second topic is the ReSNA

for MSOCCP. Applying the ISIA prototype to the ReSNA, we have showed the boundedness and the
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global convergence of generated sequence under the assumption that a certain function in MSOCCP

has the Cartesian P0 property.

We emphasize again that the ISIA plays a role of essential and comprehensive prototype not only

for the ReSNA but also for many other algorithms, which may be applied to conic complementarity

problems, nonlinear optimization problems, semi-infinite optimization problems, variational inequality

problems, etc. Some papers on Newton type algorithms only shows that the accumulation point of

generated sequence is the solution if the generated sequence is bounded. However, if they meet the

ISIA prototype, they guarantee the boundedness of the generated sequence, too. For the ReSNA,

another important future issue is to show the superlinear or quadratic convergence. To this end,

the ISIA prototype is not sufficient, but we have to analyze other properties such as the Jacobian

consistency and the semismoothness [11]. Another possible future issue is to extend the ReSNA to the

mixed symmetric cone complementarity problems. The ReSNA for the non-mixed version was already

proposed in [14] and the convergence results were obtained in a way similar to [11]. Therefore, we can

expect that the global convergence analyses by the ISIA prototype is possible to the mixed version,

too.
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