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Abstract

The Second-Order Cone Complementarity Problem (SOCCP) is a wide class of problems, which
includes the Nonlinear Complementarity Problem (NCP) and the Second-Order Cone Program-
ming Problem (SOCP). Recently, Fukushima, Luo and Tseng extended some merit functions
and their smoothing functions for NCP to SOCCP. Moreover, they derived computable formulas
for the Jacobians of the smoothing functions and gave the conditions for the Jacobians to be
invertible. In this paper, we focus on a merit function for SOCCP, and show that the merit
function is coercive under the condition that the function involved in SOCCP is strongly mono-
tone. Furthermore, we propose a globally convergent algorithm, which is based on smoothing
and regularization methods, for solving merely monotone SOCCP, and examine its effectiveness
by means of numerical experiments.
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1 Introduction

In this paper, we consider the second-order cone complementarity problem (SOCCP) [8]:

Find (x, y, ζ) ∈ <n ×<n ×<l

such that x ∈ K, y ∈ K, xT y = 0, F (x, y, ζ) = 0, (1.1)

where F : <n ×<n ×<l → <n ×<l is a continuously differentiable mapping, and K ⊂ <n is the
direct product of second-order cones, that is,

K = Kn1 ×Kn2 × · · · × Knm

with n = n1 + · · · + nm and ni-dimensional second-order cones Kni ⊂ <ni defined by

Kni =
{

(z1, z2) ∈ < × <ni−1
∣∣∣ ‖z2‖ ≤ z1

}
. (1.2)

Here and throughout ‖ · ‖ denotes the Euclidean norm.
The SOCCP includes a wide class of problems such as the Nonlinear Complementarity Problem

(NCP) and the Second-Order Cone Programming Problem (SOCP) [10]. To see this, consider
the SOCCP where n1 = n2 = · · · = nm = 1 and F (x, y, ζ) = f(x) − y with f : <n → <n. Then
this SOCCP is reduced to the NCP : Find x ∈ <n such that

x ≥ 0, f(x) ≥ 0, xT f(x) = 0.

On the other hand, consider the SOCP :

Minimize θ(z)

subject to γ(z) ∈ K, (1.3)

where θ : <s → < and γ : <s → <t. Then the Karush-Kuhn-Tucker (KKT) conditions of
SOCP (1.3) can be written as

∇θ(z) −∇γ(z)λ = 0,

λ ∈ K, γ(z) ∈ K, λT γ(z) = 0, (1.4)

where λ ∈ <t is the Lagrange multiplier vector. Then, by setting n = t, l = s, x = λ, y = µ,
ζ = z and

F (x, y, ζ) =

(
µ − γ(z)

∇θ(z) −∇γ(z)λ

)
,

the KKT conditions can be reduced to the form of SOCCP (1.1).
For solving SOCCP, Fukushima, Luo and Tseng [8] reformulated SOCCP as an equivalent

system of equations, and consider the smoothing methods for them. In this paper, instead of an
equivalent system of equations, we focus on the unconstrained optimization problem equivalent
to SOCCP (1.1) :

Minimize Θ(x, y, ζ), (1.5)
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where Θ is a function from <n × <n × <l into <. The objective function Θ is called a merit
function for SOCCP (1.1).

In order to construct a merit function for the SOCCP, it is convenient to introduce a function
Φ : <n ×<n → <n satisfying

Φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, xT y = 0. (1.6)

By using such a function, SOCCP (1.1) can be rewritten as the following equivalent system of
equations :

Φ(x, y) = 0, F (x, y, ζ) = 0.

Now we define the function Ψ : <n ×<n ×<l → < by

Ψ(x, y, ζ) =
1
2
‖Φ(x, y)‖2 +

1
2
‖F (x, y, ζ)‖2. (1.7)

Then, it is easy to see that Ψ(x, y, ζ) ≥ 0 for any (x, y, ζ) ∈ <n×<n×<l, and that Ψ(x, y, ζ) = 0
if and only if (x, y, ζ) is a solution of SOCCP (1.1). Therefore, the function Ψ defined by (1.7)
can serve as a merit function for SOCCP (1.1).

Fukushima, Luo and Tseng [8] showed that the natural residual function satisfying (1.6) for
the NCP can be extended to the SOCCP by means of Jordan algebra. However, they did not
consider the merit function Ψ explicitly, and there remains much to study on it. One of the
important questions is under what conditions Ψ is coercive. The function Ψ : <n ×<n×<l → <
is said to be coercive, if

lim
‖(x,y,ζ)‖→∞

Ψ(x, y, ζ) = ∞.

The coerciveness of the merit function is an important property from the viewpoint of opti-
mization. For example, if the merit functionΨ is coercive, then the level sets Lα = {(x, y, ζ) |
Ψ(x, y, ζ) ≤ α} are bounded for all α ∈ <, which guarantees that a sequence generated by an
appropriate descent algorithm applied to the problem (1.5) has an accumulation point. One of
the main purposes of this paper is to give a condition for the merit function Ψ given by (1.7)
with the natural residual to be coercive. More precisely, we will show that the merit function
is coercive when F is strongly monotone. It is well-known that sufficient conditions for coer-
civeness of merit functions are the strong monotonicity and Lipschitz continuity of F [12]. The
result of this paper weakens the conditions.

Another main purpose of this paper is to develop an algorithm for solving the SOCCP. In or-
der to solve the equivalent minimization problem efficiently, we propose to combine a smoothing
method with a regularization method. Smoothing methods, which aim to handle nondifferen-
tiablity of functions, have been developed for solving various kinds of complementarity problems
[2, 3, 4, 9, 13, 14]. On the other hand, regularization methods are used to deal with ill-posed
problems [5, 6]. In this paper, we propose a hybrid method based on these two methods and
show that it is globally convergent under the monotonicity assumption on the problem.

The paper is organized as follows. In Section 2, we introduce the spectral factorization for
second-order cones, which plays a key role in analyzing the properties of merit functions for
the SOCCP. Moreover, we construct a merit function Ψ by using the natural residual for the
SOCCP. In Section 3, we show that the merit function Ψ defined in terms of the natural residual
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is coercive, provided that the function involved in the SOCCP is strongly monotone. In section
4, we propose an algorithm for solving the SOCCP and show that it has global convergence
for monotone SOCCPs. In Section 5, we present some numerical results with the proposed
algorithm. In Section 6, we conclude the paper with some remarks.

2 Preliminaries

2.1 Spectral Factorization

In this section, we briefly review some properties of the spectral factorization with respect to a
second-order cone, which will be used in the subsequent analysis. Spectral factorization is one
of the basic issues of Jordan algebra. For more detail, see [7, 8].

For any vector x = (x1, x2) ∈ <×<n−1 (n ≥ 2), its spectral factorization with respect to the
second-order cone Kn is defined as

x = κ1v1 + κ2v2,

where κ1 and κ2 are spectral values given by

κi = x1 + (−1)i‖x2‖, i = 1, 2, (2.1)

and v1 and v2 are spectral vectors given by

vi =


1
2

(
1, (−1)i x2

‖x2‖

)
(x2 6= 0),

1
2
(1, (−1)iω) (x2 = 0),

i = 1, 2, (2.2)

with ω ∈ <n−1 such that ‖ω‖ = 1.
The spectral values and vectors have the following properties. For any x ∈ <n, the inequality

κ1 ≤ κ2 holds, and

κ1 ≥ 0 ⇐⇒ x ∈ Kn. (2.3)

Moreover, for any x ∈ <n, we have ‖vi‖ = 1/
√

2 for i = 1, 2, and v1
T v2 = 0.

For any x ∈ <n, let [x]K
n

+ denote the projection of x onto the second-order cone Kn, that is,

[x]K
n

+ = arg min
y∈Kn

‖y − x‖.

We often denote [x]K
n

+ as [x]+ when Kn is clear from the context. In particular, when n = 1,

[α]+ = max(0, α) (2.4)

for any α ∈ <. For n ≥ 2, the projection [ · ]+ can be also calculated easily as shown in the
following proposition.

Proposition 2.1 [8, Proposition 3.3] For any x ∈ <n (n ≥ 2),

[x]+ = [κ1]+v1 + [κ2]+v2,

where κ1 and κ2 are the spectral values of x defined by (2.1), and v1 and v2 are the spectral
vectors of x defined by (2.2).
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From Proposition 2.1, (2.1), (2.3) and (2.4), we can easily verify that

x ∈ Kn ⇐⇒ [x]+ = x, (2.5)

x ∈ −Kn ⇐⇒ [x]+ = 0, (2.6)

x /∈ Kn ∪ −Kn =⇒ [x]+ = κ2v2. (2.7)

These relation will be useful in showing the coerciveness of a merit function based on the natural
residual.

2.2 Merit Function

In this section, we aim to construct a merit function for SOCCP (1.1) by using the natural
residual ϕNR : <n×<n → <n defined in [8]. Firstly, we note that the complementarity conditions
on K can be decomposed into those conditions on Kni .

Proposition 2.2 Let K = Kn1 × · · · × Knm, x = (x1, . . . , xm) ∈ <n1 × · · · × <nm and y =
(y1, . . . , ym) ∈ <n1 × · · · × <nm. Then the following relation holds :

x ∈ K, y ∈ K, xT y = 0 if and only if xi ∈ Kni , yi ∈ Kni , xiT yi = 0 (i = 1, . . . ,m).

Proof. Since “ if ” part is evident, we only show “ only if ” part. Noticing that xi, yi ∈ Kni

implies xi
1 ≥ ‖xi

2‖ and yi
1 ≥ ‖yi

2‖, we have xiT yi = xi
1y

i
1 + xi

2
T
yi
2 ≥ ‖xi

2‖‖yi
2‖ + xi

2
T
yi
2 ≥ 0 for

each i, where the last inequality follows from Cauchy-Schwarz inequality. On the other hand,
xT y = 0 yields

∑m
i=1 xiT yi = 0. Thus xiT yi = 0 holds for each i.

This proposition naturally leads us to construct a function Φ : <n ×<n → <n satisfying (1.6)
as

Φ(x, y) =

 ϕ1(x1, y1)
...

ϕm(xm, ym)

 ,

where ϕi : <ni ×<ni → <ni is a function satisfying

ϕi(xi, yi) = 0 ⇐⇒ xi ∈ Kni , yi ∈ Kni , xiT yi = 0 (2.8)

for each i = 1, . . . ,m. Fukushima, Luo and Tseng [8] showed that (2.8) holds for the natural
residual function ϕNR : <ni ×<ni → <ni defined by

ϕNR(xi, yi) = xi − [xi − yi]K
ni

+ .

This function is a natural extension of the corresponding function for the NCP. Using this
function, we define the function ΦNR : <n ×<n → <n by

ΦNR(x, y) =

 ϕNR(x1, y1)
...

ϕNR(xm, ym)

 ,

and then, we can construct a merit function for SOCCP (1.1) as

ΨNR(x, y, ζ) =
1
2
‖ΦNR(x, y)‖2 +

1
2
‖F (x, y, ζ)‖2

=
1
2

m∑
i=1

‖ϕNR(xi, yi)‖2 +
1
2
‖F (x, y, ζ)‖2. (2.9)
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3 Coerciveness of Merit Function with Natural Residual

In this section, we focus on the merit function ΨNR defined by (2.9), and study conditions for
ΨNR to be coercive. In the remainder of the paper, we restrict ourselves to the SOCCP in which
(i) F is given by F (x, y, ζ) = f(x)− y with a function f : <n → <n and (ii) K = Kn. Then, we
can rewrite SOCCP (1.1) as follows : Find (x, y) ∈ <n ×<n such that

x ∈ Kn, y ∈ Kn, xT y = 0, y = f(x). (3.1)

Note that the assumption (i) implies F does not involve the additional variable ζ. This assump-
tion may seem rather restrictive. However, under the assumption (i), the KKT conditions for
SOCP (1.3) can be written in the form of the SOCCP (see Section 6 of this paper). The assump-
tion (ii) implies ΦNR(x, y) = ϕNR(x, y). This assumption is only for simplicity of presentation,
and the results obtained in this section can be extended to the general K in a straightforward
manner.

The merit function ΨNR for SOCCP (3.1) can be constructed as

ΨNR(x, y) =
1
2
‖ϕNR(x, y)‖2 +

1
2
‖f(x) − y‖2. (3.2)

Now we investigate the coerciveness of ΨNR defined by (3.2). The next proposition says that,
to show the coerciveness of ΨNR(x, y), it is sufficient to show the coerciveness of Ψ̃NR : <n → <
defined by

Ψ̃NR(x) := ‖ϕNR(x, f(x))‖. (3.3)

Proposition 3.1 ΨNR is coercive if Ψ̃NR is coercive.

Proof. Noticing that
√

2‖ξ‖2 + 2‖η‖2 ≥ ‖ξ‖ + ‖η‖ for any ξ, η ∈ <n, we have

2
√

ΨNR(x, y) ≥ ‖x − [x − y]+‖ + ‖f(x) − y‖
≥ ‖x − [x − f(x)]+‖ − ‖[x − f(x)]+ − [x − y]+‖ + ‖f(x) − y‖
≥ ‖x − [x − f(x)]+‖ − ‖f(x) − y‖ + ‖f(x) − y‖
= Ψ̃NR(x),

where the second inequality follows from the triangle inequality and the third inequality follows
from the nonexpansiveness of the projection operator. Hence, ΨNR is coercive if Ψ̃NR is coercive.

In order to investigate conditions for Ψ̃NR to be coercive, we need the following five lemmas.

Lemma 3.1 (a) If x − y ∈ Kn, then ϕNR(x, y) = y. (b) If x − y ∈ −Kn, then ϕNR(x, y) = x.

Proof. (a) From (2.5) we have ϕNR(x, y) = x− [x− y]+ = x− (x− y) = y. (b) From (2.6) we
have ϕNR(x, y) = x − [x − y]+ = x − 0 = x.

Lemma 3.2 For any x = (x1, x2) ∈ < × <n−1 with x1 < 0,

‖ϕNR(x, y)‖ ≥ 1√
2
‖x‖. (3.4)
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Proof. Let κ1 and κ2 be the spectral values of x defined by (2.1), and let v1 and v2 be
the spectral vectors of x defined by (2.2). Since κ1 = x1 − ‖x2‖ < 0 from x1 < 0, we have
[x]+ = [κ2]+v2. Furthermore, since [x]+ is the nearest point to x in Kn and [x − y]+ ∈ Kn, we
have ‖x − [x − y]+‖ ≥ ‖x − [x]+‖. Hence, we obtain

‖ϕNR(x, y)‖ ≥ ‖x − [κ2]+v2‖ . (3.5)

When κ2 < 0, we have ‖x−[κ2]+v2‖ = ‖x‖ ≥ (1/
√

2)‖x‖. When κ2 ≥ 0, we have ‖x−[κ2]+v2‖2 =
‖x − κ2v2‖2 = ‖κ1v1‖2 = (1/2)(x2

1 + ‖x2‖2) − x1‖x2‖ ≥ (1/2)‖x‖2, where the last inequality
holds from x1 < 0. In either case, we have ‖x − [κ2]+v2‖ ≥ (1/

√
2)‖x‖. It then follows from

(3.5) that (3.4) holds.

The next lemma gives some properties of unbounded sequences {x(k)} and {y(k)} with {ϕNR(x(k), y(k))}
being bounded.

Lemma 3.3 Assume that sequences {x(k)} ⊆ <n and {y(k)} ⊆ <n satisfy

(i) lim
k→∞

‖x(k)‖ = ∞ and lim
k→∞

‖y(k)‖ = ∞ ;

(ii) x(k) − y(k) /∈ Kn ∪ −Kn for all k ;

(iii) {ϕNR(x(k), y(k))} is bounded.

Then there exist a positive constant M ∈ (2, ∞) and an infinite subsequence K ⊆ {0, 1, . . .}
such that

(a) −M < |x(k)
1 | − ‖x(k)

2 ‖ < M and −M < |y(k)
1 | − ‖y(k)

2 ‖ < M for all k ;

(b-1) {|x(k)
1 |}k∈K , {‖x(k)

2 ‖}k∈K , {|y(k)
1 |}k∈K and {‖y(k)

2 ‖}k∈K are unbounded ;

(b-2) |x(k)
1 | > 10M , ‖x(k)

2 ‖ > 10M , |y(k)
1 | > 10M and ‖y(k)

2 ‖ > 10M for all k ∈ K ;

(c) 1+
x

(k)
1 x

(k)
2

|x(k)
1 ||y(k)

1 |
x

(k)
2

T
y

(k)
2

‖x(k)
2 ‖‖y(k)

2 ‖
<

10M

9

(
1

|x(k)
1 |2

+
1

|y(k)
1 |2

)
<

1
45M

for all k ∈ K ;

(d)
√

2−0.1 <
‖x(k)‖
|x(k)

1 |
<

√
2+0.1 and

√
2−0.1 <

‖y(k)‖
|y(k)

1 |
<

√
2+0.1 for all k ∈ K.

Proof. Let λ
(k)
1 and λ

(k)
2 be the spectral values of x(k) − y(k), and let u

(k)
1 and u

(k)
2 be the

spectral vectors of x(k) − y(k). Then, from assumption (ii) and (2.7) we have

ϕNR(x(k), y(k)) = x(k) − [x(k) − y(k)]+ = x(k) − λ
(k)
2 u

(k)
2 .

Moreover, from the definitions (2.1), (2.2) of spectral values and vectors, we have

x(k) − λ
(k)
2 u

(k)
2 = (x(k)

1 , x
(k)
2 ) − 1

2

{
x

(k)
1 − y

(k)
1 +

∥∥∥x
(k)
2 − y

(k)
2

∥∥∥} 1,
x

(k)
2 − y

(k)
2∥∥∥x

(k)
2 − y

(k)
2

∥∥∥
 .

From these equalities, we have
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∥∥∥ϕNR(x(k), y(k))
∥∥∥2

=
(
|x(k)

1 |2 + ‖x(k)
2 ‖2

)
−

{
x

(k)
1 − y

(k)
1 +

∥∥∥x
(k)
2 − y

(k)
2

∥∥∥} x
(k)
1 + (x(k)

2 )T x
(k)
2 − y

(k)
2∥∥∥x

(k)
2 − y

(k)
2

∥∥∥


+
1
2

{
x

(k)
1 − y

(k)
1 +

∥∥∥x
(k)
2 − y

(k)
2

∥∥∥}2

= (x(k)
1 )2 + ‖x(k)

2 ‖2 −
(
x

(k)
1 − y

(k)
1

)
x

(k)
1 −

(
x

(k)
1 − y

(k)
1

)
x

(k)
2

T x
(k)
2 − y

(k)
2∥∥∥x

(k)
2 − y

(k)
2

∥∥∥
−

∥∥∥x
(k)
2 − y

(k)
2

∥∥∥x
(k)
1 − x

(k)
2

T (
x

(k)
2 − y

(k)
2

)
+

1
2

(
x

(k)
1 − y

(k)
1

)2

+
(
x

(k)
1 − y

(k)
1

) ∥∥∥x
(k)
2 − y

(k)
2

∥∥∥ +
1
2

∥∥∥x
(k)
2 − y

(k)
2

∥∥∥2

=
{

(x(k)
1 )2 + ‖x(k)

2 ‖2 −
(
x

(k)
1 − y

(k)
1

)
x

(k)
1 − x

(k)
2

T (
x

(k)
2 − y

(k)
2

)
+

1
2

(
x

(k)
1 − y

(k)
1

)2

+
1
2

∥∥∥x
(k)
2 − y

(k)
2

∥∥∥2
}

− 1∥∥∥x
(k)
2 − y

(k)
2

∥∥∥
{(

x
(k)
1 − y

(k)
1

)
x

(k)
2

T (
x

(k)
2 − y

(k)
2

)
+

∥∥∥x
(k)
2 − y

(k)
2

∥∥∥2

x
(k)
1 −

(
x

(k)
1 − y

(k)
1

) ∥∥∥x
(k)
2 − y

(k)
2

∥∥∥2
}

=
1
2

{
(x(k)

1 )2 + ‖x(k)
2 ‖2 + (y(k)

1 )2 + ‖y(k)
2 ‖2

}
− 1∥∥∥x

(k)
2 − y

(k)
2

∥∥∥
(
x

(k)
2 − y

(k)
2

)T (
x

(k)
1 x

(k)
2 − y

(k)
1 y

(k)
2

)
=

1
2

{(
|x(k)

1 | − ‖x(k)
2 ‖

)2

+
(
|y(k)

1 | − ‖y(k)
2 ‖

)2
}

+
(∥∥∥x

(k)
1 x

(k)
2

∥∥∥ +
∥∥∥y

(k)
1 y

(k)
2

∥∥∥ −
∥∥∥x

(k)
1 x

(k)
2 − y

(k)
1 y

(k)
2

∥∥∥)
+

1∥∥∥x
(k)
2 − y

(k)
2

∥∥∥
{∥∥∥x

(k)
2 − y

(k)
2

∥∥∥∥∥∥x
(k)
1 x

(k)
2 − y

(k)
1 y

(k)
2

∥∥∥ −
(
x

(k)
2 − y

(k)
2

)T (
x

(k)
1 x

(k)
2 − y

(k)
1 y

(k)
2

)}
. (3.6)

Now, let Pk, Qk and Rk be defined by

Pk =
1
2

{(
|x(k)

1 | − ‖x(k)
2 ‖

)2
+

(
|y(k)

1 | − ‖y(k)
2 ‖

)2
}

,

Qk =
∥∥∥x

(k)
1 x

(k)
2

∥∥∥ +
∥∥∥y

(k)
1 y

(k)
2

∥∥∥ −
∥∥∥x

(k)
1 x

(k)
2 − y

(k)
1 y

(k)
2

∥∥∥ ,

Rk =
1∥∥∥x

(k)
2 − y

(k)
2

∥∥∥
{∥∥∥x

(k)
2 − y

(k)
2

∥∥∥ ∥∥∥x
(k)
1 x

(k)
2 − y

(k)
1 y

(k)
2

∥∥∥ −
(
x

(k)
2 − y

(k)
2

)T (
x

(k)
1 x

(k)
2 − y

(k)
1 y

(k)
2

)}
.

Then (3.6) can be written as∥∥∥ϕNR(x(k), y(k))
∥∥∥2

= Pk + Qk + Rk.

Since {‖ϕNR(x(k), y(k))‖2} is bounded, there exists a sufficiently large constant M ∈ (2,∞) such
that

Pk + Qk + Rk < M

for all k > 0. Here we note that Pk is nonnegative. By the triangle inequality, Qk is also
nonnegative. Furthermore, Rk is also nonnegative from Cauchy-Schwarz inequality. Thus, we
have Pk < M , Qk < M and Rk < M for all k.
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We first show (a). Pk < M implies that max
{∣∣∣|x(k)

1 | − ‖x(k)
2 ‖

∣∣∣ , ∣∣∣|y(k)
1 | − ‖y(k)

2 ‖
∣∣∣} <

√
2M <

M , where the last inequality holds from M > 2. Therefore, we have

−M < |x(k)
1 | − ‖x(k)

2 ‖ < M, −M < |y(k)
1 | − ‖y(k)

2 ‖ < M,

that is (a).
By using (a), we show (b). From (a), we have |x(k)

1 | − M < ‖x(k)
2 ‖ and ‖x(k)

2 ‖ − M < |x(k)
1 |.

Similarly, we have |y(k)
1 |−M < ‖y(k)

2 ‖ and ‖y(k)
2 ‖−M < |y(k)

1 |. Moreover, since limk→∞ ‖x(k)‖ =
∞ and limk→∞ ‖y(k)‖ = ∞, there exists an infinite subsequence K ⊆ {0, 1, . . .} such that
{|x(k)

1 |}k∈K , {‖x(k)
2 ‖}k∈K , {|y(k)

1 |}k∈K and {‖y(k)
2 ‖}k∈K are unbounded, and that |x(k)

1 | > 10M ,
‖x(k)

2 ‖ > 10M , |y(k)
1 | > 10M and ‖y(k)

2 ‖ > 10M for all k ∈ K, that is (b).
Next we show that (c) holds for all k ∈ K. From Qk < M and the definition of Qk, we have∥∥∥x

(k)
1 x

(k)
2

∥∥∥ +
∥∥∥y

(k)
1 y

(k)
2

∥∥∥ − M <
∥∥∥x

(k)
1 x

(k)
2 − y

(k)
1 y

(k)
2

∥∥∥ .

Noticing that the left-hand side of this inequality is positive for any k ∈ K from (b-2), we obtain(∥∥∥x
(k)
1 x

(k)
2

∥∥∥ +
∥∥∥y

(k)
1 y

(k)
2

∥∥∥ − M
)2

<
∥∥∥x

(k)
1 x

(k)
2 − y

(k)
1 y

(k)
2

∥∥∥2
.

By easy calculation, we have∥∥∥x
(k)
1 x

(k)
2

∥∥∥ ∥∥∥y
(k)
1 y

(k)
2

∥∥∥ + x
(k)
1 y

(k)
1 x

(k)
2

T
y

(k)
2 < M

(∥∥∥x
(k)
1 x

(k)
2

∥∥∥ +
∥∥∥y

(k)
1 y

(k)
2

∥∥∥)
− M2

2
< M

(∥∥∥x
(k)
1 x

(k)
2

∥∥∥ +
∥∥∥y

(k)
1 y

(k)
2

∥∥∥)
.

Dividing both sides by |x(k)
1 ||y(k)

1 |‖x(k)
2 ‖‖y(k)

2 ‖ > 0 and using (a), we have

1 +
x

(k)
1 y

(k)
1

|x(k)
1 ||y(k)

1 |
x

(k)
2

T
y

(k)
2

‖x(k)
2 ‖‖y(k)

2 ‖
< M

(
1

|x(k)
1 |‖x(k)

2 ‖
+

1

|y(k)
1 |‖y(k)

2 ‖

)

< M

 1

|x(k)
1 |

(
|x(k)

1 | − M
) +

1

|y(k)
1 |

(
|y(k)

1 | − M
)


<

10M

9

(
1

|x(k)
1 |2

+
1

|y(k)
1 |2

)

<
1

45M
,

where the third inequality follows from the fact that |x(k)
1 | −M > (9/10)|x(k)

1 | and |y(k)
1 | −M >

(9/10)|y(k)
1 | for any k ∈ K, and the last inequality follows from (b-2).

Finally, we show that (d) holds for all k ∈ K. (a) and (b-2) yield the following relations for
all k ∈ K :

‖x(k)‖2

|x(k)
1 |2

=
|x(k)

1 |2 + ‖x(k)
2 ‖2

|x(k)
1 |2

<
|x(k)

1 |2 + (|x(k)
1 | + M)2

|x(k)
1 |2

= 1 +

(
1 +

M

|x(k)
1 |

)2

< 1 + (1 + 0.1)2

< (
√

2 + 0.1)2.

8



Furthermore, (a) and (b-2) yield the following relations for any k ∈ K :

‖x(k)‖2

|x(k)
1 |2

=
|x(k)

1 |2 + ‖x(k)
2 ‖2

|x(k)
1 |2

>
|x(k)

1 |2 + (|x(k)
1 | − M)2

|x(k)
1 |2

= 1 +

(
1 − M

|x(k)
1 |

)2

> 1 + (1 − 0.1)2

> (
√

2 − 0.1)2.

Hence, for any k ∈ K,

√
2 − 0.1 <

‖x(k)‖
|x(k)

1 |
<

√
2 + 0.1.

Similar inequalities hold for ‖y(k)‖/|y(k)
1 |.

Before we show the fourth lemma, we recall the concepts of monotonicity and strong mono-
tonicity of vector-valued functions.

Definition 3.1 The function f : <n → <n is called

(a) monotone if, for any x, z ∈ <n,

(x − z)T (f(x) − f(z)) ≥ 0;

(b) strongly monotone with modulus ε > 0 if, for any x, z ∈ <n,

(x − z)T (f(x) − f(z)) ≥ ε‖x − z‖2.

It is obvious that a strongly monotone function is monotone. Besides, we note that fε is strongly
monotone if f is monotone, where fε : <n → <n is defined by fε(x) = f(x) + εx for ε > 0.

Lemma 3.3 assumed that ‖y(k)‖ → ∞. The next lemma shows that the assumption holds
when f is strongly monotone, ‖x(k)‖ → ∞ and y(k) = f(x(k)).

Lemma 3.4 Let {x(k)} be an arbitrary sequence satisfying limk→∞ ‖x(k)‖ = ∞. If f is strongly
monotone with modulus ε > 0, then there exists k > 0 such that

‖f(x(k))‖ >
ε

2
‖x(k)‖

holds for all k > k. Moreover we have limk→∞ ‖y(k)‖ = ∞ when y(k) = f(x(k)) for all k.

Proof. Setting x = x(k) and z = 0 in Definition 3.1 (b), we have

(x(k))T
(
f(x(k)) − f(0)

)
≥ ε‖x(k)‖2.

9



Then, from Cauchy-Schwarz inequality we have

ε‖x(k)‖2 ≤ (x(k))T
(
f(x(k)) − f(0)

)
≤ ‖x(k)‖‖f(x(k)) − f(0)‖
≤ ‖x(k)‖

(
‖f(x(k))‖ + ‖f(0)‖

)
.

Moreover, dividing both sides by ‖x(k)‖, we have

‖f(x(k))‖ ≥ ε‖x(k)‖ − ‖f(0)‖.

Since x(k) → ∞, the last inequality implies that there exists k such that

‖f(x(k))‖ >
ε

2
‖x(k)‖

for all k > k.

We finally present the fifth lemma that gives two properties of infinite sequences. Since it can
be easily shown, we omit the proof.

Lemma 3.5 Let N be the set of nonnegative integers and let N1, . . . ,Nm be subsets of N such
that

(i) Ni ∩Nj = ∅ for any i 6= j ∈ {1, . . . ,m},

(ii) N =
m∪

i=1

Ni.

Then the following statements hold.

(a) Suppose that {αk} is an arbitrary real sequence such that limk→∞ αk = +∞.
Then,

|Ni| = ∞ =⇒ lim
k→∞, k∈Ni

αk = +∞.

(b) Suppose |Ni| = ∞ and {βk} is an arbitrary real sequence such that limk→∞, k∈Ni
βk =

+∞. Then,

lim
k→∞

βk = +∞.

We now give the following main theorem of this section by using the five lemmas shown above.

Theorem 3.1 Let Ψ̃NR : <n → < be defined by (3.3). If f is strongly monotone, then Ψ̃NR is
coercive.

Proof. Let {x(k)} be an arbitrary sequence such that limk→∞ ‖x(k)‖ = ∞. Then our goal is
to prove

lim
k→∞

Ψ̃NR(x(k)) = ∞. (3.7)
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We note from Lemma 3.4 that

lim
k→∞

‖f(x(k))‖ = ∞. (3.8)

We let x(k) = (x(k)
1 , x

(k)
2 ) ∈ < × <n−1 and f(x(k)) = (f1(x(k)), f2(x(k))) ∈ < × <n−1.

Now we define the index sets N1,N2,N3,N4 and N5 by

N1 =
{
k

∣∣∣ x(k) − f(x(k)) ∈ Kn
}

,

N2 =
{
k

∣∣∣ x(k) − f(x(k)) ∈ −Kn\{0}
}

,

N3 =
{
k

∣∣∣ x(k) − f(x(k)) /∈ Kn ∪ −Kn, x
(k)
1 ≤ 0

}
,

N4 =
{
k

∣∣∣ x(k) − f(x(k)) /∈ Kn ∪ −Kn, x
(k)
1 > 0, f1(x(k)) < 0

}
,

N5 =
{
k

∣∣∣ x(k) − f(x(k)) /∈ Kn ∪ −Kn, x
(k)
1 > 0, f1(x(k)) ≥ 0

}
.

Note that ∪5
i=1Ni = {0, 1, . . .} and that Ni ∩ Nj = ∅ for any i 6= j ∈ {1, 2, 3, 4, 5}. By setting

αk = ‖x(k)‖ or αk = ‖f(x(k))‖ in Lemma 3.5 (a), we obtain the following Property A.

Property A. If |Ni| = ∞, then

lim
k→∞, k∈Ni

‖x(k)‖ = ∞, lim
k→∞, k∈Ni

‖f(x(k))‖ = ∞.

By setting βk = Ψ̃NR(x(k)) in Lemma 3.5 (b), we obtain the following Property B.

Property B. If

lim
k→∞, k∈Ni

Ψ̃NR(x(k)) = ∞

for Ni such that |Ni| = ∞, then

lim
k→∞

Ψ̃NR(x(k)) = ∞.

Property B implies that, for proving (3.7), it is sufficient to show

|Ni| = ∞ =⇒ lim
k→∞, k∈Ni

Ψ̃NR(x(k)) = ∞ (3.9)

for each i ∈ {1, 2, 3, 4, 5}. Let y(k) := f(x(k)) for all k. We note that limk→∞ ‖y(k)‖ = ∞ holds
from (3.8).

Case 1. |N1| = ∞ :

Lemma 3.1 (a) implies that

ϕNR(x(k), y(k)) = y(k)

for all k ∈ N1. It then follows from Property A that

lim
k→∞, k∈N1

Ψ̃NR(x(k)) = lim
k→∞, k∈N1

∥∥∥ϕNR(x(k), y(k))
∥∥∥ = lim

k→∞, k∈N1

‖y(k)‖ = ∞.
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Case 2. |N2| = ∞ :

Lemma 3.1 (b) implies that

ϕNR(x(k), y(k)) = x(k)

for all k ∈ N2. It then follows from Property A that

lim
k→∞, k∈N2

Ψ̃NR(x(k)) = lim
k→∞, k∈N2

∥∥∥ϕNR(x(k), y(k))
∥∥∥ = lim

k→∞, k∈N2

‖x(k)‖ = ∞.

Case 3. |N3| = ∞ :

Lemma 3.2 implies that ∥∥∥ϕNR(x(k), y(k))
∥∥∥ ≥ 1√

2
‖x(k)‖

for all k ∈ N3. It then follows from Property A that

lim
k→∞, k∈N3

Ψ̃NR(x(k)) = lim
k→∞, k∈N3

∥∥∥ϕNR(x(k), y(k))
∥∥∥ ≥ lim

k→∞, k∈N3

1√
2
‖x(k)‖ = ∞.

Case 4. |N4| = ∞ :

Assuming lim infk→∞, k∈N4 ‖ϕNR(x(k), y(k))‖ < +∞, we will derive contradiction. Under this
assumption, there exists an infinite subsequence N 4 ⊆ N4 such that {ϕNR(x(k), y(k))}k∈N 4

is
bounded. Note that limk→∞, k∈N 4

‖x(k)‖ = ∞ and limk→∞, k∈N 4
‖y(k)‖ = ∞ from Property

A and Lemma 3.5 (a). Thus, since {x(k)}k∈N 4
and {y(k)}k∈N 4

satisfy assumptions (i)–(iii) of
Lemma 3.3, there exist K ⊆ N 4 and M ∈ (2,∞) satisfying (a)–(d) in Lemma 3.3. Let us choose
k ∈ K arbitrarily.

From Lemma 3.3 (c) and (x(k)
1 y

(k)
1 )/(|x(k)

1 ||y(k)
1 |) = −1, we have

x
(k)
2

T
y

(k)
2 > ‖x(k)

2 ‖‖y(k)
2 ‖

(
1 − 1

45M

)
> 100M2

(
1 − 1

45M

)
> 90M2, (3.10)

where the second inequality follows from Lemma 3.3 (b-2), and the third inequality follows from
the fact that M > 2 > 2/9. Since x(k)−y(k) /∈ Kn∪−Kn, we have −‖x(k)

2 −y
(k)
2 ‖ < x

(k)
1 −y

(k)
1 <

‖x(k)
2 − y

(k)
2 ‖ from the definition (1.2) of second-order cone, that is,(

x
(k)
1 − y

(k)
1

)2
<

∥∥∥x
(k)
2 − y

(k)
2

∥∥∥2
.

We then have

x
(k)
2

T
y

(k)
2 < x

(k)
1 y

(k)
1 +

1
2

{
‖x(k)

2 ‖2 − (x(k)
1 )2

}
+

1
2

{
‖y(k)

2 ‖2 − (y(k)
1 )2

}
< x

(k)
1 y

(k)
1 +

1
2

{(
|x(k)

1 | + M
)2

− (x(k)
1 )2

}
+

1
2

{(
|y(k)

1 | + M
)2

− (y(k)
1 )2

}
= −|x(k)

1 ||y(k)
1 | + M |x(k)

1 | + M |y(k)
1 | + M2

= −
(
|x(k)

1 | − M
) (

|y(k)
1 | − M

)
+ 2M2

< −79M2, (3.11)
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where the second inequality holds from Lemma 3.3 (a), the first equality holds from x(k) > 0
and y(k) < 0, and the third inequality holds from Lemma 3.3 (b-2). Since (3.10) and (3.11)
contradict each other, we obtain

lim
k→∞, k∈N4

Ψ̃NR(x(k)) = lim
k→∞, k∈N4

∥∥∥ϕNR(x(k), y(k))
∥∥∥2

= ∞.

Case 5. |N5| = ∞ :

Assuming lim infk→∞, k∈N5 ‖ϕNR(x(k), y(k))‖ < +∞, we will derive contradiction. Under this
assumption, there exists an infinite subsequence N 5 ⊆ N5 such that {ϕNR(x(k), y(k))}k∈N 5

is
bounded. Note that limk→∞, k∈N 5

‖x(k)‖ = ∞ and limk→∞, k∈N 5
‖y(k)‖ = ∞ from Property

A and Lemma 3.5 (a). Thus, since {x(k)}k∈N 5
and {y(k)}k∈N 5

satisfy assumptions (i)–(iii) of
Lemma 3.3, there exist K ⊆ N 5 and M ∈ (2,∞) satisfying (a)–(d) in Lemma 3.3. Let us choose
k ∈ K arbitrarily.

From Lemma 3.3 and the fact that x(k), y(k) > 0 for any k ∈ K, we have

−M < x
(k)
1 − ‖x(k)

2 ‖ < M, −M < y
(k)
1 − ‖y(k)

2 ‖ < M, (3.12)

{x(k)
1 }, {‖x(k)

2 ‖}, {y(k)
1 } and {‖y(k)

2 ‖} are unbounded, (3.13)

x
(k)
1 > 10M, ‖x(k)

2 ‖ > 10M, y
(k)
1 > 10M and ‖y(k)

2 ‖ > 10M, (3.14)

1 +
x

(k)
2

T
y

(k)
2

‖x(k)
2 ‖‖y(k)

2 ‖
<

10M

9

{
1

(x(k)
1 )2

+
1

(y(k)
1 )2

}
, (3.15)

√
2 − 0.1 <

‖x(k)‖
|x(k)

1 |
<

√
2 + 0.1 and

√
2 − 0.1 <

‖y(k)‖
|y(k)

1 |
<

√
2 + 0.1. (3.16)

Now let the spectral values of x(k) be κ
(k)
1 and κ

(k)
2 , and the spectral vectors be v

(k)
1 and v

(k)
2 .

Furthermore, let the spectral values of y(k) be ν
(k)
1 and ν

(k)
2 , and the spectral vectors be w

(k)
1

and w
(k)
2 . Note that, from (3.12) and the definition (2.1) of spectral values, we have

−M < κ
(k)
1 < M, −M < ν

(k)
1 < M. (3.17)

Since f is strongly monotone, there exists ε > 0 such that

(x − z)T (f(x) − f(z)) ≥ ε ‖x − z‖2 (3.18)

for any x, z ∈ <n. Let the sequences {ξ(k)} and {η(k)} be defined by

ξ(k) := x(k) − κ
(k)
2 w

(k)
1 , (3.19)

η(k) := f(ξ(k)). (3.20)

Substituting x = x(k) and z = ξ(k) in (3.18), we obtain

ε‖κ(k)
2 w

(k)
1 ‖2 ≤

(
x(k) − ξ(k)

)T (
y(k) − η(k)

)
= κ

(k)
2 w

(k)
1

T (
ν

(k)
1 w

(k)
1 + ν

(k)
2 w

(k)
2 − η(k)

)
=

1
2
κ

(k)
2 ν

(k)
1 − κ

(k)
2 w

(k)
1

T
η(k)

<
1
2
Mκ

(k)
2 +

1√
2
‖η(k)‖κ(k)

2 , (3.21)
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where the second equality follows from ‖w(k)
1 ‖2 = 1/2 and w

(k)
1

T
w

(k)
2 = 0, and the last inequality

follows from κ
(k)
2 > 0, −M < ν

(k)
1 < M , the Cauchy-Schwarz inequality and ‖w(k)

1 ‖ = 1/
√

2.
Since the left-hand side of (3.21) equals (1/2)ε(κ(k)

2 )2 and κ
(k)
2 is positive, dividing both sides of

(3.21) yields

‖η(k)‖ >
ε√
2
κ

(k)
2 − M√

2
.

Since {κ(k)
2 } = {x(k)

1 + ‖x(k)
2 ‖} is unbounded, {η(k)} is also unbounded.

Next, we derive a contradiction by showing the boundedness of {η(k)}. To do this, since η(k) =
f(ξ(k)), it is sufficient to show the boundedness of {ξ(k)}. Substituting x(k) = κ

(k)
1 v

(k)
1 + κ

(k)
2 v

(k)
2

in (3.19), we have

ξ(k) = κ
(k)
2

(
v

(k)
2 − w

(k)
1

)
+ κ

(k)
1 v

(k)
1 .

Since ‖v(k)
1 ‖ = 1/

√
2 and (3.17) holds, {κ(k)

1 v
(k)
1 } is bounded. Then, we can show the bounded-

ness of
{
κ

(k)
2

(
v

(k)
2 − w

(k)
1

)}
as follows :

∥∥∥κ
(k)
2

(
v

(k)
2 − w

(k)
1

)∥∥∥2
=

(
x

(k)
1 + ‖x(k)

2 ‖
)2

∥∥∥∥∥
{

1
2

(
1,

x
(k)
2

‖x(k)
2 ‖

)
− 1

2

(
1,− y

(k)
2

‖y(k)
2 ‖

)}∥∥∥∥∥
2

=
(
x

(k)
1 + ‖x(k)

2 ‖
)2

∥∥∥∥∥ 1
2

(
0,

x
(k)
2

‖x(k)
2 ‖

+
y

(k)
2

‖y(k)
2 ‖

)∥∥∥∥∥
2

=
1
2

(
x

(k)
1 + ‖x(k)

2 ‖
)2

1 +
x

(k)
2

T
y

(k)
2

‖x(k)
2 ‖‖y(k)

2 ‖


<

5
9
M

(
2x

(k)
1 + M

)2
{

1

(x(k)
1 )2

+
1

(y(k)
1 )2

}

<
5 · 2.12

9
M

1 +

(
x

(k)
1

y
(k)
1

)2


=
5 · 2.12

9
M

1 +

(
‖x(k)‖
‖y(k)‖

‖y(k)‖/y
(k)
1

‖x(k)‖/x
(k)
1

)2


< 3M

1 +

(
2(
√

2 + 0.1)
ε(
√

2 − 0.1)

)2
 ,

where the first inequality follows from x(k) > 0, y(k) > 0, (3.12) and (3.15), the second inequality
follows from the fact that (3.14) implies M < 0.1x

(k)
1 , and the third inequality follows from

Lemma 3.4 and (3.16). Since {ξ(k)} is bounded, {η(k)} = {f(ξ(k))} is also bounded. However,
this contradicts the unboundedness of {η(k)}. Hence, we obtain

lim
k→∞, k∈N5

Ψ̃NR(x(k)) = lim
k→∞, k∈N5

∥∥∥ϕNR(x(k), y(k))
∥∥∥ = ∞.

Consequently, we have shown that (3.9) holds for all i ∈ {1, 2, 3, 4, 5}. This completes the
proof.
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4 Algorithm for Solving SOCCP

In Section 3, we have shown that, if f is strongly monotone, then the merit function ΨNR given by
(3.2) is coercive. Therefore, we can solve the strongly monotone SOCCP (3.1) by minimizing ΨNR

with an appropriate descent algorithm. However, the merit function ΨNR is nondifferentiable in
general. Therefore, methods that use the gradient of the objective function, such as the steepest
descent method and Newton’s method, are not applicable. Furthermore, the assumption for f to
be strongly monotone is quite restrictive from a practical standpoint. In order to overcome such
shortcomings, we consider a smoothing method and a regularization method. In this section,
we propose a globally convergent algorithm for SOCCP, based on these methods.

4.1 Smoothing and Regularization Methods

In this section, we introduce the smoothing and regularization methods. Firstly, we describe
the smoothing method. For a nondifferentiable function h : <n → <m, we consider a function
hµ : <n → <m with a parameter µ > 0 which has the following properties :

(a) hµ is differentiable for any µ > 0,

(b) limµ→+0 hµ(x) = h(x) for any x ∈ <n.

Such a function hµ is called a smoothing function of h. Instead of solving the original problem
h(x) = 0, the smoothing method solves subproblems hµ(x) = 0 for µ > 0, and obtain a solution
of the original problem by letting µ → +0. Fukushima, Luo and Tseng [8] extended Chen and
Mangasarian’s class [2] of smoothing functions for NCP to SOCCP, which may be regarded as a
smoothing function of natural residual ϕNR .

Now, in order to define ϕµ, we consider the following continuously differentiable convex func-
tion ĝ : < → < satisfying

lim
α→−∞

ĝ(α) = 0, lim
α→∞

(ĝ(α) − α) = 0, 0 < ĝ′(α) < 1. (4.1)

For example, ĝ1(α) = (
√

α2 + 4 + α)/2 and ĝ2(α) = ln(eα + 1) satisfy the conditions. Further-
more, by using ĝ, we define g : <n → <n by

g(z) = ĝ(λ1)u1 + ĝ(λ2)u2, (4.2)

where λ1 and λ2 are the spectral values of z, and u1 and u2 are the spectral vectors of z. Then,
for µ > 0, the function ϕµ is given by

ϕµ(x, y) = x − µg((x − y)/µ). (4.3)

Fukushima, Luo and Tseng [8] showed that ϕµ with µ > 0 is a smoothing function of ϕNR . For
µ = 0, we denote ϕ0(x, y) := ϕNR(x, y) for convenience.

By using ϕµ, we define Ψµ : <n ×<n → < by

Ψµ(x, y) =
1
2
‖ϕµ(x, y)‖2 +

1
2
‖f(x) − y‖2. (4.4)

Since ϕµ is differentiable for µ > 0, Ψµ is also differentiable for µ > 0. Next, by applying
Theorem 3.1, we give a sufficient condition for the coerciveness of Ψµ.
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Theorem 4.1 If f is strongly monotone, then, for any µ ≥ 0, the function Ψµ(x, y) defined by
(4.4) is coercive.

Proof. From [8, Proposition 5.1], for any µ ≥ 0, there exists a constant ρ > 0 such that

‖ϕµ(x, y) − ϕNR(x, y)‖ ≤ ρµ, ∀x, y ∈ <n.

It then follows from Proposition 3.1 and Theorem 3.1 that Ψµ is coercive if f is strongly mono-
tone.
When f is strongly monotone, this theorem enables us to obtain a solution of SOCCP (3.1)

by using the smoothing method combined with a suitable descent method. However, strong
monotonicity of f is quite a severe condition.

As a remedy for this inconvenience, we employ the regularization method. In the regularization
method, we consider the function fε : <n → <n defined by fε(x) := f(x) + εx. This method
solves SOCCP with fε for each ε > 0 as a subproblem, and obtains a solution of SOCCP by
letting ε → +0. If f is monotone, then fε is strongly monotone for any ε > 0. Therefore, the
coerciveness of the function

Ψµ,ε(x, y) =
1
2
‖ϕµ(x, y)‖2 +

1
2
‖fε(x) − y‖2 (4.5)

is guaranteed from Theorem 4.1 and Proposition 3.1.

4.2 Stationary Point of Smoothing Function

In this section, we show that any stationary point of Ψµ,ε is a global minimum of Ψµ,ε. To this
end, we first give an explicit representation of ∇Ψµ,ε under the assumption that f is differen-
tiable.

Now, let us define Hµ,ε : <n ×<n → <n ×<n by

Hµ,ε(x, y) :=

(
ϕµ(x, y)
fε(x) − y

)
. (4.6)

Then, noticing

Ψµ,ε(x, y) =
1
2
‖Hµ,ε(x, y)‖2,

we have

∇Ψµ,ε(x, y) = ∇Hµ,ε(x, y) Hµ,ε(x, y) (4.7)

for µ > 0.
From the definition of Hµ,ε, ϕµ and fε, ∇Hµ,ε(x, y) can be written as

∇Hµ,ε(x, y) =

(
∇x ϕµ(x, y) ∇f(x) + εI
∇y ϕµ(x, y) −I

)

=

(
I −∇g(z) ∇f(x) + εI
∇g(z) −I

)
, (4.8)
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where z = (x− y)/µ and g is the function defined by (4.2). Moreover, from [8, Proposition 5.2],
∇g(z) is written as follows :

∇g(z) =



ĝ′(z1)I if z2 = 0,
b

c zT
2

‖z2‖
c z2

‖z2‖
aI + (b − a)

z2z
T
2

‖z2‖2

 if z2 6= 0,
(4.9)

where

a =
ĝ(λ2) − ĝ(λ1)

λ2 − λ1
, b =

1
2
(ĝ′(λ2) + ĝ′(λ1)), c =

1
2
(ĝ′(λ2) − ĝ′(λ1)) (4.10)

and λi, i = 1, 2 are the spectral values of z = (x − y)/µ.
It is important to see when ∇Hµ,ε(x, y) is nonsingular since (4.7) implies that, if ∇Hµ,ε(x, y)

is nonsingular everywhere, then every stationary point of Ψµ,ε is a global minimum of Ψµ,ε. The
following proposition gives a sufficient condition for ∇Hµ,ε(x, y) to be nonsingular.

Proposition 4.1 If f : <n → <n is monotone, then the Jacobian ∇Hµ,ε(x, y) is nonsingular
for any µ > 0, ε ≥ 0 and (x, y) ∈ <n ×<n.

Proof. Firstly, we show that O ≺ ∇g(z) ≺ I for any z ∈ <n. When z2 = 0, it is clear
that O ≺ ∇g(z) ≺ I since ∇g(z) = ĝ′(z1)I from (4.9) and 0 < ĝ′(z1) < 1 from (4.1). So we
only consider the case where z2 6= 0. Noticing that ∇g(z) is given by (4.9), in order to show
∇g(z) Â O, it is sufficient to show that b is positive and the Schur complement of ∇g(z) with
respect to b is positive definite．Since b = (1/2)(ĝ′(λ1)) + (1/2)(ĝ′(λ2)), we have b > 0 from
(4.1). On the other hand, the Schur complement of ∇g(z) with respect to b is given by{

aI + (b − a)
z2z

T
2

‖z2‖2

}
− c2

b

z2z
T
2

‖z2‖2
= a

(
I − z2z

T
2

‖z2‖2

)
+

b2 − c2

b

z2z
T
2

‖z2‖2
.

If a = (ĝ(λ2)−ĝ(λ1))/(λ2−λ1) ≤ 0, then the continuous differentiability of ĝ and the mean value
theorem guarantee the existence of τ ∈ [λ1, λ2] such that ĝ′(τ) ≤ 0. Since this fact contradicts
(4.1), we have a > 0. Moreover, we have (b2 − c2)/b2 = 2/ĝ(λ1) + 2/ĝ(λ2) > 0 from (4.1).
Furthermore, both z2z

T
2 /‖z2‖2 and I − z2z

T
2 /‖z2‖2 are positive semidefinite and their sum is the

identity matrix. Hence, any positive combination of z2z
T
2 /‖z2‖2 and I − z2z

T
2 /‖z2‖2 is positive

definite. Therefore, the Schur complement of ∇g(z) with respect to b is positive definite, and
hence we obtain ∇g(z) Â O. In a similar way, we can show

I −∇g(z) =


1 − b − c zT

2

‖z2‖

− c z2

‖z2‖
(1 − a)I − (b − a)

z2z
T
2

‖z2‖2

 Â O,

by showing 1 − b > 0 and the positive definiteness of the Schur complement of I −∇g(z) with
respect to 1 − b.

Secondly, we show the nonsingularity of ∇Hµ,ε(x, y)T instead of ∇Hµ,ε(x, y). Let us denote
G := ∇g((x − y)/µ) and F := ∇f(x) for convenience. Then ∇Hµ,ε(x, y)T can be written as

∇Hµ,ε(x, y)T =

(
I − G G
F + εI −I

)
.
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Let ξ, η ∈ <n satisfy

∇Hµ,ε(x, y)T

(
ξ

η

)
= 0,

that is,

(I − G)ξ + Gη = 0, (4.11)

(F + εI)ξ − η = 0. (4.12)

Multiplying the left-hand side of (4.11) by G−1 and combining with (4.12), we have

(G−1 − I + F + εI)ξ = 0.

Since O ≺ G ≺ I implies G−1 Â I and monotonicity of f implies F º O, G−1 − I + F + εI

is positive definite. So we have ξ = 0, and then η = 0 from (4.12). Hence, ∇Hµ,ε(x, y)T is
nonsingular, that is, ∇Hµ,ε(x, y) is nonsingular.

Finally, by using the result of Proposition 4.1, we give the main result of this section.

Proposition 4.2 If f : <n → <n is monotone, then, for any µ > 0 and ε ≥ 0, every stationary
point (x, y) of the function Ψµ,ε defined by (4.5) satisfies Ψµ,ε(x, y) = 0.

Proof. Note that ∇Ψµ,ε(x, y) = ∇Hµ,ε(x, y) Hµ,ε(x, y) = 0. By Proposition 4.1, ∇Hµ,ε(x, y)
is nonsingular. Hence, we have Hµ,ε(x, y) = 0, that is, Ψµ,ε(x, y) = (1/2)‖Hµ,ε(x, y)‖2 = 0.

4.3 Globally Convergent Algorithm

In Section 4.1, we showed that, for µ > 0 and ε > 0, the function Ψµ,ε defined by (4.5) is
coercive if f is monotone. Hence, by applying an appropriate descent method, we can obtain a
minimum (x(µ, ε), y(µ, ε)) of the function Ψµ,ε. Moreover, letting (µ, ε) converge to (0, 0), we
may expect that (x(µ, ε), y(µ, ε)) converges to a solution of SOCCP. However, in practice, it is
usually impossible to find an exact minimum of Ψµ,ε. So, we consider the following algorithm
in which the function Ψµ,ε is minimized only approximately at each iteration.

Algorithm 4.1 Let {εk}, {µk} and {αk} be sequences of positive numbers converging to 0.
(Step 0) Choose (x(0), y(0)) ∈ <n ×<n and set k := 0.
(Step 1) Terminate the iteration if an appropriate stopping criterion is satisfied.
(Step 2) Find a pair (x(k+1), y(k+1)) such that

Ψµk+1, εk+1
(x(k+1), y(k+1)) ≤ αk+1.

Set k := k + 1, and go back to Step 1.

To obtain (x(k+1), y(k+1)) in Step 2, we can use any unconstrained minimization technique such
as the steepest descent method and Newton’s method. We note that this algorithm is well-
defined by the following reasons. Since Ψµ,ε is differentiable and coercive from Theorem 4.1, it
has a stationary point. Moreover, Proposition 4.2 implies that the value of Ψµ,ε at the stationary
point is 0. Hence, there exists (x(k+1), y(k+1)) satisfying Step 2 for any αk+1 > 0.
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We next show the global convergent property of Algorithm 4.1, by extending the result of [6]
for NCP to SOCCP. To this end, we give two lemmas. The following lemma implies that Ψµ,ε

is uniformly continuous on a compact set not only in x and y but also in µ and ε

Lemma 4.1 Let C ⊂ <n × <n be a compact set. Then, for any δ > 0, there exists ε > 0 and
µ > 0 such that

|Ψµ,ε(x, y) − ΨNR(x, y)| ≤ δ

for any (x, y) ∈ C, ε ∈ [ 0, ε ] and µ ∈ [ 0, µ ].

Proof. Define the function Ω : <n ×<n ×<×< → < by Ω(x, y, µ, ε) := Ψµ,ε(x, y). Then, Ω
is continuous and satisfies Ω(x, y, 0, 0) = ΨNR(x, y). Since any continuous function is uniformly
continuous on a compact set, Ω is uniformly continuous on C × [ 0, ε ] × [ 0, µ ].

The next lemma is known as the mountain pass theorem, which is useful for our analysis. For
more detail, see Theorem 9.2.7 in [11].

Lemma 4.2 (Mountain Pass Theorem) Let θ : <n → < be a continuously differentiable and
coercive function. Let C ⊂ <n be a nonempty and compact set and let m be the minimum value
of θ on the boundary of C, that is,

m := min
x∈∂C

θ(x).

Assume moreover that there exist points a ∈ C and b /∈ C such that θ(a) < m and θ(b) < m.
Then, there exists a point c ∈ <n such that ∇θ(c) = 0 and θ(c) ≥ m.

Finally, by using the above lemmas. we establish the global convergence property of Algorithm
4.1.

Theorem 4.2 Let f : <n → <n be a monotone function, and assume that the solution set S of
SOCCP (3.1) is nonempty and bounded. Let {(x(k), y(k))} be a sequence generated by Algorithm
4.1. Then, {(x(k), y(k))} is bounded, and every accumulation point is a solution of (3.1).

Proof. From a simple continuity argument, we can easily show that every accumulation point
of {(x(k), y(k))} is a solution of SOCCP (3.1). So we only show the boundedness of {(x(k), y(k))}.
For a contradiction purpose, we assume that {(x(k), y(k))} is not bounded. Then, there exists a
subsequence {(x(k), y(k))}k∈K such that limk→∞, k∈K ‖(x(k), y(k))‖ = ∞. From the boundedness
of S, there exists a compact set C ⊂ <n ×<n such that S ⊂ intC and

(x(k), y(k)) /∈ C (4.13)

for all k ∈ K sufficiently large. Moreover, we have

m := min
(x,y)∈∂C

ΨNR(x, y) > 0, (4.14)

since any (x, y) ∈ ∂C does not belong to S and C is compact. Now, applying Lemma 4.1 with
δ := m/4 > 0, we have

Ψµk, εk
(x, y) − ΨNR(x, y) ≤ 1

4
m (4.15)
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and

Ψµk, εk
(x, y) − ΨNR(x, y) ≥ −1

4
m (4.16)

for any (x, y) ∈ C and k ∈ K sufficiently large. Let (x, y) ∈ S ⊂ C be a solution of SOCCP.
Then, from (4.15), we have

Ψµk, εk
(x, y) − ΨNR(x, y) = Ψµk, εk

(x, y) ≤ 1
4
m (4.17)

for all k ∈ K sufficiently large. On the other hand, letting (x̃(k), ỹ(k)) be a solution of min(x,y)∈∂C

Ψµk, εk
(x, y), we have, for all k ∈ K sufficiently large,

min
(x,y)∈∂C

Ψµk, εk
(x, y) = Ψµk, εk

(x̃(k), ỹ(k))

≥ −1
4
m + ΨNR(x̃(k), ỹ(k))

≥ −1
4
m + m

=
3
4
m, (4.18)

where the first inequality follows from (4.16) and the second inequality follows from (4.14) and
(x̃(k), ỹ(k)) ∈ ∂C. Furthermore, since Ψµk, εk

(x(k), y(k)) ≤ αk from Step 2 of Algorithm 4.1, we
have

Ψµk, εk
(x(k), y(k)) ≤ 1

4
m (4.19)

for all k ∈ K sufficiently large. Now, let k ∈ K be a sufficiently large integer satisfying
(4.13), (4.17), (4.18) and (4.19). Then, applying Lemma 4.2 to Ψµk̄, εk̄

with a := (x, y), b :=
(x(k̄), y(k̄)), m := (3/4)m, we obtain the existence of (x̂(k), ŷ(k)) ∈ <n ×<n such that

∇Ψµk̄, εk̄
(x̂(k), ŷ(k)) = 0 and Ψµk̄, εk̄

(x̂(k), ŷ(k)) ≥ 3
4
m > 0.

However, this result contradicts Proposition 4.2. Hence, {(x(k), y(k))} is bounded.

5 Numerical Experiments

In this section we present some numerical results for Algorithm4.1.

5.1 Newton’s Method

To obtain the next iterate in Step 2 of Algorithm 4.1, we use Newton’s method with Armijo’s
step size rule [1, Sec. 1.2.1]. The specific algorithm is described as follows. In the algorithm, we
denote w(k) :=

(x(k)

y(k)

)
for convenience.
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Algorithm 5.1 Choose ρ, β, η ∈ (0, 1), σ ∈ (0, 1 − β) and ν ∈ (0,∞).

(Step 0) Choose w(0) ∈ <2n, µ0 ∈ (0,∞) and ε0 ∈ (0,∞). Set α0 := η Ψµ0,ε0(w
(0))

and k := 0.

(Step 1) If ΨNR(w(k)) = 0, terminate the iteration.

(Step 2)

(Step 2.0) Set v(0) := w(k) and j := 0.

(Step 2.1) Find the solution d̂(j) of the system of equations

Hµk,εk
(v(j)) + ∇Hµk,εk

(v(j))T d̂(j) = 0.

(Step 2.2) If Ψµk, εk
(v(j) + d̂(j)) ≤ αk, let w(k+1) := v(j) + d̂(j) and go to

Step 3. Otherwise go to Step 2.3.

(Step 2.3) Let mj be the smallest nonnegative integer such that

Ψµk, εk
(v(j)) − Ψµk, εk

(v(j) + ρmj d̂(j)) ≥ −σρmj∇Ψµk, εk
(v(j))T d̂(j).

Let v(j+1) := v(j) + ρmj d̂(j).

(Step 2.4) If

Ψµk, εk
(v(j+1)) ≤ αk,

set w(k+1) := v(j+1), and go to Step 3. Otherwise, set j := j + 1, and go
back to Step 2.1.

(Step 3) Let

αk+1 := η Ψµk, εk
(w(k+1)), µk+1 := min

(
ν
√

2αk+1,
µk

2

)
and εk+1 := µk+1.

Set k := k + 1, and go back to Step 1.

Note that {αk} converges to 0 since αk+1 = η Ψµk, εk
(w(k)) ≤ ηαk and η ∈ (0, 1). The sequences

{µk} and {εk} also converge to 0 since µk+1 ≤ µk/2 and εk+1 ≤ εk/2. Hence, this algorithm has
global convergence from Theorem 4.2.

5.2 Results of Experiments

In order to evaluate the efficiency of Algorithm 5.1, we have conducted some numerical experi-
ments. In our experiments, we chose ĝ(α) = (

√
α2 + 4+α)/2, β = 0.5, ρ = 0.5, η = 0.99, σ = 0.5

and ν = 0.45. Moreover, we let µ0 := ‖w(0)‖ and ε0 := ‖w(0)‖. We employed ΨNR(w(k)) <1e-20
as the termination criterion. Our algorithm was coded in MATLAB 5.3.1 and run on a SUN
ULTRA 60.
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We solved three SOCCPs by Algorithm 5.1. The functions f and the second-order cone
constraints K of the problems are given by :

Problem1 (n = 3) : f(x) :=

 21 −9 18
−9 4 −7
18 −7 19


 x1

x2

x3

 +

 3
7
1

 , K = K3,

Problem2 (n = 3) : f(x) :=

 0.07x3
1 − 4

0.04x3
2 − 3.93

0.03x3
3 − 5.72

 , K = K3,

Problem3 (n = 5) : f(x) :=


24(2x1 − x2)3 + exp(x1 − x3) − 4x4 + x5

−12(2x1 − x2)3 + 3(3x2 + 5x3)/
√

1 + (3x2 + 5x3)2 − 6x4 − 7x5

− exp(x1 − x3) + 5(3x2 + 5x3)/
√

1 + (3x2 + 5x3)2 − 3x4 + 5x5

4x1 + 6x2 + 3x3 − 1
−x1 + 7x2 − 5x3 + 2

 ,

K = K3 ×K2.

We note that these three functions are monotone but not strongly monotone. In Problem
1, f : <3 → <3 is an affine function whose coefficient matrix is symmetric and positive
semidefinite but not positive definite. In Problem 2, f : <3 → <3 is a strictly monotone
function comprised of cubic and constant terms only. Noticing that its Jacobian is given by
∇f(x) = diag(0.21x2

1, 0.12x2
2, 0.09x2

3), it can be easily seen that f is monotone but not strongly
monotone. In Problem 3, f : <5 → <5 is the function which appears in the KKT conditions for
the SOCP :

Minimize exp(z1 − z3) + 3(2z1 − z2)4 +
√

1 + (3z2 + 5z3)2

subject to

 z1

z2

z3

 ∈ K3,

(
4 6 3
−1 7 −5

)  z1

z2

z3

 +

(
−1
2

)
∈ K2.

From the convexity of the objective function, it can be easily shown that f is monotone.
Table 1 shows the behavior of Algorithm 5.1 starting from the initial point x(0) := (100, . . . , 100)T

and y(0) := (−100, . . . ,−100)T . The table contains the following items for each k : The number
of inner iterations j, the smoothing parameter µk, the regularization parameter εk, the inexact
minimization parameter αk, the functional value Ψµk, εk

(w(k)), and the value of the merit func-
tion ΨNR(w(k)). We can see from Table 1 that the generated sequences converge very quickly.
Especially near the solution, the behavior exhibits superlinear convergence.

Next, in Table 2, we give the results for Algorithm5.1 from several different starting points
randomly chosen from a sphere centered at the origin. For Problems 1, 2 and 3, their radius of
the sphere is set to be 1e+10, 1e+3, and 50, respectively. Table 2 contains the following items :
The norm of the starting point ‖(x(0), y(0))‖, the total number of the iterations (iter.), and the
final value of the merit function ΨNR . From Table 2, we confirm that our algorithm has global
convergence. Moreover, we see that the choice of an initial point does not influence the number
of iterations substantially.
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Table 1: Convergent Behavior
Problem k j µk(= εk) αk Ψµk, εk (w(k)) ΨNR(w(k))

Problem 1 0 0 2.449e+02 1.035e+09 1.035e+09 1.023e+07
1 1 5.883e+01 8.546e+03 4.935e+04 8.538e+04
2 1 1.516e+00 5.676e+00 5.652e+04 5.955e+04
3 1 7.581e-01 4.637e+00 3.833e+00 3.551e+00
4 1 1.564e-01 6.036e-02 8.186e-02 1.144e-01
5 1 3.614e-02 3.225e-03 1.629e-03 1.882e-03
6 1 7.075e-04 1.236e-06 4.333e-05 4.503e-05
7 1 3.893e-06 3.741e-11 1.671e-08 1.690e-08
8 1 8.642e-10 1.844e-18 5.106e-13 5.108e-13
9 1 2.619e-14 1.694e-27 2.517e-20 2.517e-20
10 1 6.843e-16 1.156e-30 1.930e-29 1.890e-29

Problem 2 0 0 2.449e+02 8.050e+09 8.050e+09 3.713e+09
1 1 1.225e+02 7.863e+08 3.932e+08 1.406e+08
2 1 6.124e+01 3.763e+07 1.601e+07 3.583e+06
3 1 3.062e+01 1.624e+06 6.231e+05 1.211e+05
4 1 1.531e+01 4.850e+04 1.315e+04 7.141e+02
5 1 7.655e+00 7.507e+02 2.136e+01 5.670e+02
6 2 1.445e+00 5.158e+00 2.211e+01 4.093e+01
7 1 7.226e-01 1.343e+00 1.978e+00 1.400e+01
8 2 1.209e-01 3.607e-02 9.624e-01 2.313e+00
9 1 5.264e-02 6.842e-03 6.777e-02 2.637e-01
10 1 3.196e-03 2.522e-05 5.712e-02 6.489e-02
11 1 1.598e-03 1.830e-05 2.354e-05 1.563e-04
12 2 8.485e-07 1.778e-12 1.592e-05 1.595e-05
13 1 4.243e-07 1.292e-12 1.667e-12 1.104e-11
14 2 5.896e-14 8.583e-27 1.125e-12 1.125e-12
15 1 2.948e-14 6.526e-27 7.896e-27 5.276e-26

Problem 3 0 0 3.162e+02 3.604e+14 3.604e+14 3.600e+14
1 1 1.581e+02 1.322e+14 1.321e+14 1.320e+14
2 1 7.906e+01 1.185e+13 1.184e+13 1.184e+13
3 1 3.953e+01 1.069e+12 1.068e+12 1.067e+12
4 1 1.976e+01 9.710e+10 9.700e+10 9.691e+10
5 1 9.882e+00 8.892e+09 8.882e+09 8.872e+09
6 1 4.941e+00 8.222e+08 8.211e+08 8.200e+08
7 1 2.471e+00 7.698e+07 7.686e+07 7.674e+07
8 1 1.235e+00 7.291e+06 7.277e+06 7.263e+06
9 1 6.176e-01 6.536e+05 6.518e+05 6.500e+05
10 1 3.088e-01 6.366e+04 6.338e+04 6.311e+04
11 1 1.544e-01 1.670e+04 1.667e+04 1.664e+04
12 1 7.720e-02 6.276e+03 6.274e+03 6.271e+03
13 1 3.860e-02 7.459e+01 7.431e+01 7.403e+01
14 1 1.930e-02 6.428e+01 6.426e+01 6.423e+01
15 1 9.651e-03 1.161e+00 1.163e+00 1.166e+00
16 1 4.825e-03 2.720e-03 2.663e-03 2.620e-03
17 1 2.413e-03 2.232e-03 2.210e-03 2.192e-03
18 1 1.206e-03 1.833e-03 1.824e-03 1.816e-03
19 1 6.032e-04 1.498e-03 1.494e-03 1.491e-03
20 1 3.016e-04 1.217e-03 1.215e-03 1.213e-03
21 1 1.508e-04 1.031e-03 1.030e-03 1.029e-03
22 1 7.539e-05 7.309e-06 7.322e-06 7.340e-06
23 1 1.377e-06 4.682e-12 1.852e-09 1.922e-09
24 1 2.440e-09 1.470e-17 6.399e-13 6.422e-13
25 1 7.731e-13 1.476e-24 2.017e-18 2.018e-18
26 1 3.728e-16 3.432e-31 2.025e-25 2.027e-25
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Table 2: Global Convergence
Problem ‖(x(0), y(0))‖ iter. ΨNR

Problem 1 1.245e-03 8 7.511e-25
4.005e-02 8 2.096e-23
1.186e-01 8 4.133e-25
4.223e+00 7 2.462e-24
7.663e+00 8 5.279e-25
1.309e+01 9 3.437e-25
2.153e+01 11 4.223e-29
4.510e+01 12 2.098e-26
1.719e+03 11 6.993e-27
1.209e+04 15 9.754e-21
8.439e+04 12 1.043e-22
1.003e+05 12 1.821e-21
2.661e+06 13 6.054e-30
4.685e+06 12 4.386e-28
4.041e+07 12 7.409e-21
4.660e+07 13 9.241e-27
3.178e+08 21 2.258e-26
4.038e+09 16 8.342e-29
5.114e+09 23 3.869e-29
5.686e+09 17 1.184e-28

Problem 2 1.111e-03 12 2.465e-29
5.470e-02 10 1.610e-23
9.352e-02 10 1.172e-25
6.271e-01 11 1.824e-21
7.094e+00 17 9.044e-21
1.445e+01 13 6.013e-22
2.231e+01 16 2.193e-27
4.078e+01 15 6.027e-21
4.639e+01 18 2.948e-21
7.285e+01 17 1.715e-28
1.154e+02 19 1.144e-29
1.902e+02 18 7.987e-21
4.161e+02 18 7.676e-24
5.172e+02 21 5.424e-24
5.551e+02 22 3.843e-21
5.812e+02 31 2.636e-21
6.223e+02 21 7.691e-30
6.492e+02 23 7.396e-30
6.868e+02 17 1.043e-24
8.000e+02 20 1.589e-25

Problem 3 0.029 8 2.111e-21
0.078 11 2.245e-27
0.121 10 6.932e-23
0.311 10 2.692e-31
1.621 11 4.127e-30
5.172 15 6.268e-31
9.615 14 8.243e-26
11.42 14 1.086e-24
16.13 16 2.041e-31
19.03 19 7.510e-21
26.21 15 1.120e-26
27.08 22 3.289e-22
32.02 21 5.445e-22
33.15 23 1.958e-31
33.32 17 6.546e-26
33.45 21 5.161e-30
34.88 15 4.933e-23
41.40 19 1.984e-24
44.03 16 8.486e-31
48.33 22 1.293e-30
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6 Final Remarks

In this paper, we have shown that the merit function ΨNR defined by (3.2) for SOCCP (3.1)
is coercive if f is strongly monotone, and that the smoothing function Ψµ defined by (4.4) is
also coercive under the same condition. Moreover, based on the idea of the smoothing method
and the regularization method, we have proposed a globally convergent algorithm for solving
monotone SOCCP (3.1).

In Section 3 and 4, the function F in SOCCP (1.1) is assumed to be of the form by F (x, y, ζ) =
f(x) − y. This assumption may seem rather restrictive. However, the KKT conditions for
SOCP (1.3) can be written as the SOCCP with F (x, y, ζ) = f(x)−y as follows : In SOCP (1.3),
let z = z′ − z′′ with z′ ∈ <s

+ and z′′ ∈ <s
+ , and denote ẑ :=

(z′

z′′
)
∈ <2s

+ , where <n
+ is the n-

dimensional nonnegative orthant. Moreover, define θ̂ : <2s → < by θ̂(ẑ) = θ(z′ − z′′), and
γ̂ : <2s → <t by γ̂(ẑ) = γ(z′ − z′′). Then the SOCP (1.3) can be reformulated as

Minimize θ̂(ẑ)

subject to

(
γ̂(ẑ)

ẑ

)
∈ K × <2s

+ , (6.1)

and the KKT conditions for (6.1) are written as

∇θ̂(ẑ) −
(
∇γ̂(ẑ) I

)(
λ̂1

λ̂2

)
= 0,

(
λ̂1

λ̂2

)
∈ K × <2s

+ ,

(
γ̂(ẑ)

ẑ

)
∈ K × <2s

+ ,

(
λ̂1

λ̂2

)T(
γ̂(ẑ)

ẑ

)
= 0. (6.2)

Now, let µ̂1 = γ̂(ẑ), and notice that Proposition 2.2 holds. Then, (6.2) can be rewritten as(
γ̂(ẑ)

∇θ̂(ẑ) −∇γ̂(ẑ)λ̂1

)
=

(
µ̂1

λ̂2

)
,

(
λ̂1

ẑ

)
∈ K × <2s

+ ,

(
µ̂1

λ̂2

)
∈ K × <2s

+ ,

(
λ̂1

ẑ

)T(
µ̂1

λ̂2

)
= 0. (6.3)

Setting

x =

(
λ̂1

ẑ

)
, y =

(
µ̂1

λ̂2

)
, f(x) =

(
γ̂(ẑ)

∇θ̂(ẑ) −∇γ̂(ẑ)λ̂1

)
, (6.4)

the KKT conditions (6.3) for SOCP (1.3) can be reduced to the SOCCP with F (x, y, ζ) =
f(x) − y.

Note that the KKT conditions (6.3) for SOCP (1.3) contain more variables than the original
KKT conditions (1.4). Furthermore, some desirable properties of the functions involved in
SOCP (1.3) may be lost. For example, even if γ in SOCP (1.3) is strictly convex, γ̂ in (6.3) is
convex but not strictly convex in general. Hence, it will be useful to develop a method that can
directly deal with the KKT conditions (1.4), or more generally, SOCCP involving the function
F (x, y, ζ) which is not restricted to be of the form F (x, y, ζ) = f(x) − y.

In Sections 3 and 4, it is also assumed that K = Kn. For the general case where K = Kn1 ×
· · ·×Knm , it can be shown that the merit functionΨNR defined by (2.9) with F (x, y, ζ) = f(x)−y

is coercive when f has the following property.
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Property 1 For K = Kn1×· · ·×Knm, let x = (x1, . . . , xm) ∈ <n1×· · ·×<nm, z = (z1, . . . , zm) ∈
<n1×· · ·×<nm. Moreover, let f : <n → <n1×· · ·×<nm be represented as f(x) =

(
f1(x), . . . , fm(x)

)
with f i : <n → <ni , i = 1, . . . ,m. Then, there exists ε > 0 such that

max
i

(xi − zi)T
{
f i(x) − f i(z)

}
≥ ε‖x − z‖2

holds for any x, z ∈ <n.

Note that strongly monotone functions have Property 1. When n1 = · · · = nm = 1, a function
satisfying Property 1 is reduced to a uniform P function. As a future research issue, it is
interesting to see whether the condition for coerciveness of the merit function ΨNR can be
weakened. In the case of NCP, it has been shown that some merit functions are coercive under
a condition weaker than the uniform P property [6].
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