Manual of MNCP_ReSNA

— ReSNA Plugin for Mixed Nonlinear Complementarity Problems —

Shunsuke Hayashi*

September 3, 2013

1 Problem

MNCP_ReSNA.m solves (tries to solve) the Mixed Nonlinear Complementarity Problem (MNCP) expressed as follows:

Find
$$(x, y, p) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^l$$

such that $x \ge 0, y \ge 0, x^\top y = 0,$
 $y = F_1(x, p), F_2(x, p) = 0,$ (1.1)

where $F_1 : \mathbb{R}^n \times \mathbb{R}^l \to \mathbb{R}^n$ and $F_2 : \mathbb{R}^n \times \mathbb{R}^l \to \mathbb{R}^l$ are given continuously differentiable functions.

2 How to use the plugin

Putting ReSNA.m in the same folder, you can use MNCP_ReSNA.m as follows.

```
Usage 1: [x,y,p] = MNCP_ReSNA(FUNC,nabFUNC,n,el)
Usage 2: [x,y,p] = MNCP_ReSNA(FUNC,nabFUNC,n,el,x0,y0,p0)
```

• FUNC — implies the function $F : \mathbb{R}^{n+l} \to \mathbb{R}^{n+l}$ such that

$$F(z) = \begin{pmatrix} F_1(x,p) \\ F_2(x,p) \end{pmatrix} \text{ with } z = \begin{pmatrix} x \\ p \end{pmatrix}.$$

If function m-file F.m plays a role of function F, then put F.m in the same folder and let FUNC = @F. ("at mark" is required before the name of function m-file.)

• nabFUNC — implies $\nabla F : \mathbb{R}^{n+l} \to \mathbb{R}^{(n+l) \times (n+l)}$, i.e., the transposed Jacobian of function F. More precisely,

$$\nabla F(z) = \begin{pmatrix} \nabla_x F_1(x,p) \ \nabla_x F_2(x,p) \\ \nabla_p F_1(x,p) \ \nabla_p F_2(x,p) \end{pmatrix} \text{ with } z = \begin{pmatrix} x \\ p \end{pmatrix}.$$

If function m-file nabF.m plays a role of function ∇F , then put nabF.m in the same folder and let nabFUNC = @nabF. If you do not have the closed form of $\nabla F(z)$, let nabFUNC = []. In this case, $\nabla F(z)$ is approximated by means of the finite difference method.

• **n** — implies the value of *n*, i.e., the dimension of *x* or $F_1(x, p)$ in problem (1.1). **n** should be given as a positive integer.

^{*}Graduate School of Information Sciences (GSIS), Tohoku University (s_hayashi@plan.civil.tohoku.ac.jp)

- el implies the value of l, i.e., the dimension of p or $F_2(x, p)$ in problem (1.1). el should be given as a nonnegative integer. If p and $F_2(x, p)$ are absent (non-mixed case), let el=0.
- x0 implies the initial point $x^{(0)}$ for the regularized smoothing Newton algorithm (Algorithm 4.1 in manual_ReSNA.pdf). x0 should be given as a column vector whose length is equal to n. If you omit x0 or let x0 = [], then ReSNA chooses a random vector from $[-1, 1]^n$ automatically.
- y0 implies the initial point $y^{(0)}$, which can be omitted similarly to x0.
- p0 implies the initial point $p^{(0)}$ for the regularized smoothing Newton algorithm. p0 should be given as a column vector whose length is equal to e1. If you omit p0 or let p0 = [], then ReSNA chooses a random vector from $[-1,1]^l$ automatically.

Parameters in ReSNA.m

- **PROGRESS** decides whether or not ReSNA displays the detailed progress of the iteration. The default value is 'Y'.
- tole is used for the termination criterion in Step 1 (Algorithm 4.1 in manual_ReSNA.pdf). When $||H_{NR}(w^{(k)})|| \leq$ tole, the algorithm terminates normally and the obtained output is guaranteed to be the solution of problem (1.1). The default value is 1e-8.
- tole_diff is used for approximating the Jacobian matrix by means of the finite difference method. The default value is 1e-8.
- eta, eta_bar, rho, sigma, kappa, kappa_bar, kappa_hat are the parameters indicated in Algorithm 4.1 in manual_ReSNA.pdf. Some default values are assigned automatically.