Manual of ReSNA

— matlab software for mixed nonlinear second-order cone complementarity

problems based on Regularized Smoothing Newton Algorithm —

Shunsuke Hayashi*

September 4, 2013

1 Introduction

ReSNA (Regularized Smoothing Newton Algorithm) is a matlab software for solving the following
mixed nonlinear second-order cone complementarity problem (MNSOCCP):

Find (z,y,p) € R® x R" x R!
such that z € K, ye K, z'y =0, (1.1)
Yy = F1($7p)7 F2(x>p) =0,

where F} : R" x Rl — R™ and F» : R x Rl — R are given continuously differentiable functions, and
K is a Cartesian product of several second-order cones (SOCs), i.e.,

K=K x K" x...x K"

with ny +no + -+ +n,, =n and

{zeR|z>0} (n;=1)
K=
{zER”i 21 > z§+---+z,2”} (n; > 2).
MNSOCCEP (1.1) involves many kinds of problems as special cases. When ny =ng = -+ =ny, = 1,

MNSOCCEP (1.1) reduces to the following mixed complementary problem:

Find (z,p) € R" x R’
such that z >0, Fy(z,p) >0, z' Fi(z,p) =0, Fy(x,p) = 0. (1.2)

Also, the following nonlinear second-order cone program (NSOCP)

Minimize 6(z)
subject to G(z) € K, H(z) =0 (1.3)

reduces to MNSOCCP (1.1) via the KKT formulation.

2 How to use ReSNA

ReSNA.m can be used as follows.

Usage 1: [x,y,p] = ReSNA(FUNC,nabFUNC,K,el)
Usage 2: [x,y,p] = ReSNA(FUNC,nabFUNC,K,el,x0,y0,p0)

*Graduate School of Information Sciences (GSIS), Tohoku University (s_hayashi@plan.civil.tohoku.ac.jp)

e FUNC — implies the function F : R"* — R™* such that

F
F(z) = < 1(:B,p)> with z = <m)
Fy(z,p) p
If function m-file F.m plays a role of function F', then put F.m in the same folder and let FUNC = @F.
(“at mark” is required before the name of function m-file.)

e nabFUNC — implies VF : R"H — R DX+ ' e the transposed Jacobian of function F. More
precisely,

o= (Ve i) v ()

If function m-file nabF.m plays a role of function VF', then put nabF.m in the same folder and
let nabFUNC = @nabF. If you do not have the closed form of VF(z), let nabFUNC= []. In this case,
VF(z) is approximated by means of the finite difference method.

e K — implies the Cartesian structure of K in MNSOCCP (1.1). K should be given as the row or
column vector whose component corresponds to the dimension of each second-order cones. For
example, when K = K3 x ! x K2, let K=[3,1,2]. When K =]R}FO, let K=ones(1,10). When
K =0, let K=[] or K=0, whereby ReSNA solves the vector equation F(p) = 0.

e el — implies the value of [, i.e., the dimension of p or Fy(z,p) in MNSOCCP (1.1). el should
be given as a nonnegative integer. If p and Fy(x,p) are absent (non-mixed case), let el =0.

e x0 — implies the initial point z(©) for the regularized smoothing Newton algorithm (Algorithm
4.1 given later). x0 should be given as a column vector whose length is equal to sum(K). If you
omit x0 or let x0=[], then ReSNA chooses a random vector from [—1, 1]" automatically.

e yO — implies the initial point y©) which can be omitted similarly to x0.

e p0 — implies the initial point p@ for the regularized smoothing Newton algorithm. pO should
be given as a column vector whose length is equal to el. If you omit pO or let p0=[], then
ReSNA chooses a random vector from [—1,1]' automatically.

Parameters in ReSNA.m

e PROGRESS — decides whether or not ReSNA displays the detailed progress of the iteration. The
default value is >Y’.

e tole — is used for the termination criterion in Step 1. When ||H, (w®)| <tole, the al-
gorithm terminates normally and the obtained output is guaranteed to be the solution of
MNSOCCEP (1.1). The default value is 1e-8.

e tole diff — is used for approximating the Jacobian matrix by means of the finite difference
method. The default value is 1e-8.

e eta, eta bar, rho, sigma, kappa, kappa-bar, kappa_hat — are the parameters indicated
in Algorithm 4.1. Some default values are assigned automatically.

3 Basic idea of ReSNA

In this section, we summarize the rough idea of ReSNA. For the detailed mathematical background,
see [2].
For z = (z!,...,2™) € R™ x --- x R™ and y = (y',...,y™) € R™ x ... x R" define function

¢ R" X R® — R" (called natural residual) by

ean (@t yh)

e (@™, y™)

O (2, 9") 1= 2° — Peni (2 — y'),

where Pcn; (z° — ') denotes the Euclidean projection of 2! — y* onto K™ . Then, it follows that

¢ (z,y) =0 — zek,yek,zly=0.

Therefore, letting H,, : R® x R" x Rl — R?"*! be defined by

P (2, y)
HNR(x’yvp) = Fl(l‘,p) -9y,
FZ(x7p)

MNSOCCP (1.1) is reformulated as the following vector equation equivalently:

H (z,y,p) = 0. (3.1)

Since MNSOCCP (1.1) is equivalent to (3.1), we have only to solve (3.1) instead of MNSOCCP (1.1).
However, function ®, is nondifferentiable, and hence the Newton based method cannot be applied
directly. Moreover, the level set of || H, (z,y,p)| may often be unbounded even when F; and F; have
nice properties. To overcome those difficulties, we introduce the smoothing and the regularization
methods.

Smoothing method
Let
SO,U (1"17 yl)
(I);L(xv y) = 5
Pu(z™ y™)
@u(xiayi) = xi - Pu(xl - yl)a
Pu(2) == pg(a/pmyut™) + pgOa/pyut®,
1
g(a) == 5(o?+4+a),
where \; and Xy are the spectral values of z, and v} and u{?} are the spectral vectors of z. (See
(1, 2].) Then, ®, satisfies the following properties:
e &, is continuously differentiable for any fixed p > 0.
o lim,\ o ®,(z,y) = Oy (x,y) for any fixed (x,y) € R x R™.

Hence, we use ®, instead of @, with letting p ™\, 0. This is the basic idea of smoothing method.

Regularization method
Let the functions Fy . : R" x R! — R™ and Fy. :R" x R! — R! be defined by
Fic(x,p) := Fi(z,p) + ez,
Fhe(x,p) = Fa(z,p) +ep,
respectively, with a positive parameter €. In general, functions F;. and F». have better properties

than I} and F5 from the viewpoint of global convergence. For example, if F' = (g) is monotone, then

(%Z) is strongly monotone for any € > 0.

Regularized smoothing Newton method

Define functions H,, . : R® x R" x Rl — R?"H by

@u(x,y)
Hu,s(x7y7p) = Fl,E(xap> Y- (3'2)
FQ,E(wap)

Then, we solve the vector equation H, .(x,y,p) = 0 by Newton’s method with letting (i, <) ~\, (0,0).

4 Algorithm

4.1 Explicit expression of Jacobian and additional functions

Remark 4.1 From the definition of H,, -, ®,, g, etc., VH, . (z,y,p) € REHD)* 204D cqn be calculated
as

diag {1 — VP, (z* —y")}]%y Vi Fi(z,p) +el V.. Fy(z, p)
=)

VHM,E(%%P) = dlag{vpﬂ(_yZ ;’7;1 _I 0 9 (41)
0 V, Fi(z,p) Vp Fo(x,p) + el
where VP, (z) is written as
9'(z1 /)1 if 22 =0,
T
Cuzy
VPM(Z) = by 22| . (4.2)
T if z2 # 0,
S22 T (b — a) 2222
Iz " O el
with
(. — 9Q2/p) = 5\ /p)
g X/p—=M/w
1. R
b = 5(8'(Na/w) + 5" (M /1), (4.3)
L. N
¢ = 50" a/p) = ' A/).
Definition 4.1
(a) Let X :R"™ — [0,4+00) be defined by
. min |[\;(z Z(z)#0
Az) == iGI(Z)’) (Zz) #0) (4.4)
0 (Z(2)=0),

where \i(z) (i = 1,2) are the spectral values of z, and Z(z) C {1,2} is the index set defined by
I(z) :={i|Xi(z) # 0}.

(b) Let i : R™ x R™ — [0, 4+00] be defined by
+00 (0>1/2 or a=0)
il 6) =
%]a!\/g (0 <1/2 and a #0).

Proposition 4.1 Let § be defined as in Section 3. Let vy, and *yar be defined as in [2], respectively.
Then, for any « € R, 6 >0 and p € (0,7, d)), we have

7 (@) =9 (@)] < 4. (4.5)
4.2 Main algorithm
For convenience, we denote
T (k)
wem y], w® = [y®

Algorithm 4.1 Choose n, p € (0,1), 7€ (0,n], 0 € (0,1/2), K >0 and & > 0.
Step 0 Choose w® € R and Gy € (0,00). Let pug == || Hy (w)| and gg := || Hy (w@)].

Set k := 0.
Step 1 Terminate if | Hy, (w®)|| = 0.
Step 2

Step 2.0 Set v := w*) ¢ R2H gpnd j:= 0.
Step 2.1 Find a vector d9) € R*"* such that

Step 2.2 If |Hy, c, (09 +dD)|| < By, then let w*+D .= v\ 4 d9) and go to Step
3. Otherwise, go to Step 2.3.
Step 2.3 Find the smallest nonnegative integer m such that
\I’uk,sk(v(j) + Pmd(j)) < (1- 2Upm)‘lf#k,5k(v(j)).
Let mji=m, Tj = pmj and U(jJrl) e ’U(j) + chf(j).
Step 2.4 If
||Hﬂk75k(v(j+1))|| < Bk, (4.6)

then let w1 .= vU+D and go to Step 3. Otherwise, set j := j+ 1 and go back
to Step 2.1.

Step 3 Update the parameters as follows:
Iuk+1 - min {RHHNR(w(k+1))H2, MOﬁk+1’ E(S\($(k+1) - y(k+1))7 /%HHNR('U)(]C+1))H>})
€k+1 1= min {H||HNR(w(k+1))”2,€0ﬁk+l} ’

Brr1 = Bont L.

Set k:=k+ 1. Go back to Step 1.

In Step 3, A is the function given by (4.4), and 7i(e, §) is determined so that 7 (a) — Yo ()] < 6 for
any p € (0,7i(a,0)). In the inner iterations Steps 2.0—2.4, a damped Newton method seeks a point
w* 1) such that [|H,, e, (w*)| < B. Note that we have By — 0 as k — 0. Step 3 specifies the
updating rule of the parameters, where {0;}, {uxr} and {er} converge to 0 since 0 < 77 < n < 1.
Algorithm 4.1 is well-defined in the sense that Steps 2.0-2.4 find vU*)) satisfying (4.6) in a finite
number of iterations for each k.

4.3 Convergence properties

In [2], the authors proved that Algorithm 4.1 is globally and quadratically convergent when [= 0 (i.e.,
p and Fy are absent.) and F} is monotone.

References

[1] M. FUKUSHIMA, Z.-Q. Luo, AND P. TSENG, Smoothing functions for second-order cone comple-
mentarity problems, STAM Journal on Optimization, 12 (2001), pp. 436-460.

[2] S. HAvAasHI, N. YAMASHITA, AND M. FUKUSHIMA, A combined smoothing and regularization

method for monotone second-order cone complementarity problems, STAM Journal on Optimiza-
tion, 15 (2005), pp. 593-615.

