
Manual of ReSNA
— matlab software for mixed nonlinear second-order cone complementarity

problems based on Regularized Smoothing Newton Algorithm —

Shunsuke Hayashi∗

September 4, 2013

1 Introduction

ReSNA (Regularized Smoothing Newton Algorithm) is a matlab software for solving the following
mixed nonlinear second-order cone complementarity problem (MNSOCCP):

Find (x, y, p) ∈ Rn × Rn × Rl

such that x ∈ K, y ∈ K, x>y = 0, (1.1)
y = F1(x, p), F2(x, p) = 0,

where F1 : Rn × Rl → Rn and F2 : Rn × Rl → Rl are given continuously differentiable functions, and
K is a Cartesian product of several second-order cones (SOCs), i.e.,

K := Kn1 ×Kn2 × · · · × Knm

with n1 + n2 + · · · + nm = n and

Kni :=

{
z ∈ R

∣∣ z ≥ 0
}

(ni = 1){
z ∈ Rni

∣∣∣ z1 ≥
√

z2
2 + · · · + z2

ni

}
(ni ≥ 2).

MNSOCCP (1.1) involves many kinds of problems as special cases. When n1 = n2 = · · · = nm = 1,
MNSOCCP (1.1) reduces to the following mixed complementary problem:

Find (x, p) ∈ Rn × Rl

such that x ≥ 0, F1(x, p) ≥ 0, x>F1(x, p) = 0, F2(x, p) = 0. (1.2)

Also, the following nonlinear second-order cone program (NSOCP)

Minimize θ(z)
subject to G(z) ∈ K, H(z) = 0 (1.3)

reduces to MNSOCCP (1.1) via the KKT formulation.

2 How to use ReSNA

ReSNA.m can be used as follows.

Usage 1: [x,y,p] = ReSNA(FUNC,nabFUNC,K,el)

Usage 2: [x,y,p] = ReSNA(FUNC,nabFUNC,K,el,x0,y0,p0)

∗Graduate School of Information Sciences (GSIS), Tohoku University (s hayashi@plan.civil.tohoku.ac.jp)

1

• FUNC — implies the function F : Rn+l → Rn+l such that

F (z) =
(

F1(x, p)
F2(x, p)

)
with z =

(
x

p

)
.

If function m-file F.m plays a role of function F , then put F.m in the same folder and let FUNC = @F.
(“at mark” is required before the name of function m-file.)

• nabFUNC — implies ∇F : Rn+l → R(n+l)×(n+l), i.e., the transposed Jacobian of function F . More
precisely,

∇F (z) =
(
∇xF1(x, p) ∇xF2(x, p)
∇pF1(x, p) ∇pF2(x, p)

)
with z =

(
x

p

)
.

If function m-file nabF.m plays a role of function ∇F , then put nabF.m in the same folder and
let nabFUNC = @nabF. If you do not have the closed form of ∇F (z), let nabFUNC = []. In this case,
∇F (z) is approximated by means of the finite difference method.

• K — implies the Cartesian structure of K in MNSOCCP (1.1). K should be given as the row or
column vector whose component corresponds to the dimension of each second-order cones. For
example, when K = K3 ×K1 ×K2, let K = [3,1,2]. When K = R10

+ , let K = ones(1,10). When
K = ∅, let K = [] or K = 0, whereby ReSNA solves the vector equation F (p) = 0.

• el — implies the value of l, i.e., the dimension of p or F2(x, p) in MNSOCCP (1.1). el should
be given as a nonnegative integer. If p and F2(x, p) are absent (non-mixed case), let el = 0.

• x0 — implies the initial point x(0) for the regularized smoothing Newton algorithm (Algorithm
4.1 given later). x0 should be given as a column vector whose length is equal to sum(K). If you
omit x0 or let x0 = [], then ReSNA chooses a random vector from [−1, 1]n automatically.

• y0 — implies the initial point y(0), which can be omitted similarly to x0.

• p0 — implies the initial point p(0) for the regularized smoothing Newton algorithm. p0 should
be given as a column vector whose length is equal to el. If you omit p0 or let p0 = [], then
ReSNA chooses a random vector from [−1, 1]l automatically.

Parameters in ReSNA.m

• PROGRESS — decides whether or not ReSNA displays the detailed progress of the iteration. The
default value is ’Y’.

• tole — is used for the termination criterion in Step 1. When ‖HNR(w(k))‖ ≤ tole, the al-
gorithm terminates normally and the obtained output is guaranteed to be the solution of
MNSOCCP (1.1). The default value is 1e-8.

• tole diff — is used for approximating the Jacobian matrix by means of the finite difference
method. The default value is 1e-8.

• eta, eta bar, rho, sigma, kappa, kappa bar, kappa hat — are the parameters indicated
in Algorithm 4.1. Some default values are assigned automatically.

2

3 Basic idea of ReSNA

In this section, we summarize the rough idea of ReSNA. For the detailed mathematical background,
see [2].

For x = (x1, . . . , xm) ∈ Rn1 × · · · × Rnm and y = (y1, . . . , ym) ∈ Rn1 × · · · × Rnm , define function
ΦNR : Rn × Rn → Rn (called natural residual) by

ΦNR(x, y) :=

 ϕNR(x1, y1)
...

ϕNR(xm, ym)

 ,

ϕNR(xi, yi) := xi − PKni (xi − yi),

where PKni (xi − yi) denotes the Euclidean projection of xi − yi onto Kni . Then, it follows that

ΦNR(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, xT y = 0.

Therefore, letting HNR : Rn × Rn × Rl → R2n+l be defined by

HNR(x, y, p) :=

 ΦNR(x, y)
F1(x, p) − y

F2(x, p)

 ,

MNSOCCP (1.1) is reformulated as the following vector equation equivalently:

HNR(x, y, p) = 0. (3.1)

Since MNSOCCP (1.1) is equivalent to (3.1), we have only to solve (3.1) instead of MNSOCCP (1.1).
However, function ΦNR is nondifferentiable, and hence the Newton based method cannot be applied
directly. Moreover, the level set of ‖HNR(x, y, p)‖ may often be unbounded even when F1 and F2 have
nice properties. To overcome those difficulties, we introduce the smoothing and the regularization
methods.

Smoothing method

Let

Φµ(x, y) :=

 ϕµ(x1, y1)
...

ϕµ(xm, ym)

 ,

ϕµ(xi, yi) := xi − Pµ(xi − yi),

Pµ(z) := µĝ(λ1/µ)u{1} + µĝ(λ2/µ)u{2},

ĝ(α) :=
1
2
(√

α2 + 4 + α
)
,

where λ1 and λ2 are the spectral values of z, and u{1} and u{2} are the spectral vectors of z. (See
[1, 2].) Then, Φµ satisfies the following properties:

• Φµ is continuously differentiable for any fixed µ > 0.

• limµ↘0 Φµ(x, y) = ΦNR(x, y) for any fixed (x, y) ∈ Rn × Rn.

Hence, we use Φµ instead of ΦNR with letting µ ↘ 0. This is the basic idea of smoothing method.

3

Regularization method

Let the functions F1,ε : Rn × Rl → Rn and F2,ε : Rn × Rl → Rl be defined by

F1,ε(x, p) := F1(x, p) + εx,

F2,ε(x, p) := F2(x, p) + εp,

respectively, with a positive parameter ε. In general, functions F1,ε and F2,ε have better properties
than F1 and F2 from the viewpoint of global convergence. For example, if F =

(
F1

F2

)
is monotone, then(F1,ε

F2,ε

)
is strongly monotone for any ε > 0.

Regularized smoothing Newton method

Define functions Hµ,ε : Rn × Rn × Rl → R2n+l by

Hµ,ε(x, y, p) :=

 Φµ(x, y)
F1,ε(x, p) − y

F2,ε(x, p)

 . (3.2)

Then, we solve the vector equation Hµ,ε(x, y, p) = 0 by Newton’s method with letting (µ, ε) ↘ (0, 0).

4 Algorithm

4.1 Explicit expression of Jacobian and additional functions

Remark 4.1 From the definition of Hµ,ε, Φµ, ĝ, etc., ∇Hµ,ε(x, y, p) ∈ R(2n+l)×(2n+l) can be calculated
as

∇Hµ,ε(x, y, p) =

 diag {I −∇Pµ(xi − yi)}m
i=1 ∇x F1(x, p) + εI ∇x F2(x, p)

diag {∇Pµ(xi − yi)}m
i=1 −I 0

0 ∇p F1(x, p) ∇p F2(x, p) + εI

 , (4.1)

where ∇Pµ(z) is written as

∇Pµ(z) =

ĝ′(z1/µ)I if z2 = 0, bµ
cµzT

2

‖z2‖
cµz2

‖z2‖
aµI + (bµ − aµ)

z2z
T
2

‖z2‖2

 if z2 6= 0,
(4.2)

with

aµ =
ĝ(λ2/µ) − ĝ(λ1/µ)

λ2/µ − λ1/µ
,

bµ =
1
2
(ĝ′(λ2/µ) + ĝ′(λ1/µ)),

cµ =
1
2
(ĝ′(λ2/µ) − ĝ′(λ1/µ)).

(4.3)

Definition 4.1

(a) Let λ̃ : Rn → [0,+∞) be defined by

λ̃(z) :=

{
min

i∈I(z)
|λi(z)| (I(z) 6= ∅)

0 (I(z) = ∅) ,
(4.4)

where λi(z) (i = 1, 2) are the spectral values of z, and I(z) ⊆ {1, 2} is the index set defined by
I(z) := {i |λi(z) 6= 0}.

4

(b) Let µ : Rn × Rn → [0, +∞] be defined by

µ(α, δ) :=

+∞ (δ ≥ 1/2 or α = 0)

1
2
|α|

√
δ (δ < 1/2 and α 6= 0) .

Proposition 4.1 Let ĝ be defined as in Section 3. Let γµ and γ+
0 be defined as in [2], respectively.

Then, for any α ∈ R, δ > 0 and µ ∈ (0, µ(α, δ)), we have

|γ′
µ(α) − γ+

0 (α)| < δ. (4.5)

4.2 Main algorithm

For convenience, we denote

w :=

x
y
p

 , w(k) :=

x(k)

y(k)

p(k)

 .

Algorithm 4.1 Choose η, ρ ∈ (0, 1), η ∈ (0, η], σ ∈ (0, 1/2), κ > 0 and κ̂ > 0.

Step 0 Choose w(0) ∈ R2n+l and β0 ∈ (0,∞). Let µ0 := ‖HNR(w(0))‖ and ε0 := ‖HNR(w(0))‖.
Set k := 0.

Step 1 Terminate if ‖HNR(w(k))‖ = 0.
Step 2

Step 2.0 Set v(0) := w(k) ∈ R2n+l and j := 0.
Step 2.1 Find a vector d̂(j) ∈ R2n+l such that

Hµk,εk
(v(j)) + ∇Hµk,εk

(v(j))T d̂(j) = 0.

Step 2.2 If ‖Hµk,εk
(v(j) + d̂(j))‖ ≤ βk, then let w(k+1) := v(j) + d̂(j) and go to Step

3. Otherwise, go to Step 2.3.
Step 2.3 Find the smallest nonnegative integer m such that

Ψµk, εk
(v(j) + ρmd̂(j)) ≤ (1 − 2σρm)Ψµk, εk

(v(j)).

Let mj := m, τj := ρmj and v(j+1) := v(j) + τj d̂
(j).

Step 2.4 If

‖Hµk,εk
(v(j+1))‖ ≤ βk, (4.6)

then let w(k+1) := v(j+1) and go to Step 3. Otherwise, set j := j + 1 and go back
to Step 2.1.

Step 3 Update the parameters as follows :

µk+1 := min
{

κ‖HNR(w(k+1))‖2, µ0η
k+1, µ

(
λ̃(x(k+1) − y(k+1)), κ̂‖HNR(w(k+1))‖

)}
,

εk+1 := min
{

κ‖HNR(w(k+1))‖2, ε0η
k+1

}
,

βk+1 := β0η
k+1.

Set k := k + 1. Go back to Step 1.

In Step 3, λ̃ is the function given by (4.4), and µ(α, δ) is determined so that |γ′
µ(α) − γ+

0 (α)| < δ for
any µ ∈ (0, µ(α, δ)). In the inner iterations Steps 2.0 – 2.4, a damped Newton method seeks a point
w(k+1) such that ‖Hµk,εk

(w(k+1))‖ ≤ βk. Note that we have βk → 0 as k → 0. Step 3 specifies the
updating rule of the parameters, where {βk}, {µk} and {εk} converge to 0 since 0 < η ≤ η < 1.
Algorithm 4.1 is well-defined in the sense that Steps 2.0 – 2.4 find v(j+1) satisfying (4.6) in a finite
number of iterations for each k.

5

4.3 Convergence properties

In [2], the authors proved that Algorithm 4.1 is globally and quadratically convergent when l = 0 (i.e.,
p and F2 are absent.) and F1 is monotone.

References

[1] M. Fukushima, Z.-Q. Luo, and P. Tseng, Smoothing functions for second-order cone comple-
mentarity problems, SIAM Journal on Optimization, 12 (2001), pp. 436–460.

[2] S. Hayashi, N. Yamashita, and M. Fukushima, A combined smoothing and regularization
method for monotone second-order cone complementarity problems, SIAM Journal on Optimiza-
tion, 15 (2005), pp. 593–615.

6

